Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

5.3: Interés Compuesto

( \newcommand{\kernel}{\mathrm{null}\,}\)

La mayoría de los bancos, préstamos, tarjetas de crédito, etc. te cobran intereses compuestos, no simples intereses. El interés compuesto es el interés pagado tanto sobre el principal original como sobre todos los intereses que se hayan agregado al principal original. Los intereses de una hipoteca o préstamo de auto se componen mensualmente. Los intereses de una cuenta de ahorro se pueden componer trimestralmente (cuatro veces al año). ¡Los intereses de una tarjeta de crédito pueden ser compuestos semanalmente o diariamente!

Tabla5.3.1: Períodos compuestos
Tipo de composición Número de períodos compuestos por año
Anualmente 1
Semestral 2
Trimestral 4
Mensual 12
Diario 365
Intereses compuestos: Intereses pagados sobre el principal Y los intereses devengados.

Ejemplo5.3.1: Compound Interest—Using a Table

Supongamos que invierte $3000 en una cuenta que le paga 7% de interés anual durante cuatro años. Utilizando el interés compuesto, después de que el interés se calcula al final de cada año, entonces ese monto se suma al monto total de la inversión. Después al año siguiente, los intereses se calculan utilizando el nuevo total del préstamo.

Tabla5.3.2: Interés compuesto usando una tabla
Año Intereses devengados Total de Préstamo
1 $3000*0.07 = $210 $3000 + $210 = $3210
2 $3210 *0.07 = $224.70 $3210 + $224.70 = $3434.70
3 $3434.70*0.07 = $240.43 $3434.70 + 240.43 = $3675.13
4 $3675.13 *0.07 = $257.26 3675.13 + 257.26$ = $3932.39
Total $932.39

Entonces, después de cuatro años, has ganado 932.39 dólares en intereses por un total de $3932.39.

Fórmula de interés compuesto

F=P(1+rn)nt

donde

  • F = Valor futuro
  • P = Valor actual
  • r = Tasa porcentual anual (TAE) cambiada a decimal
  • t = Número de años
  • n = Número de períodos compuestos por año

Ejemplo5.3.2: Comparación del interés simple frente al interés compuesto

Comparemos un plan de ahorro que paga 6% de interés simple frente a otro plan que paga 6% anual de interés compuesto trimestralmente. Si depositamos $8,000 en cada cuenta de ahorro, ¿cuánto dinero tendremos en cada cuenta después de tres años?

6% Interés Simple: P = $8,000, r = 0.06, t = 3

Así, tenemos $9440.00 en la cuenta de interés simple después de tres años.

6% Intereses Compuesto Trimestral: P = $8,000, r = 0.06, t = 3, n=4

Figura5.3.3: Cálculo para F por ejemplo5.3.2

Entonces, tenemos $9564.95 en la cuenta trimestral compuesta después de tres años.

Con intereses simples ganamos $1440.00 en nuestra inversión, mientras que con intereses compuestos ganamos $1564.95.

Ejemplo5.3.3: Interés compuesto: mensual compuesto

En comparación con Ejemplo5.3.2 considera otra cuenta con 6% de interés compuesto mensualmente. Si invertimos $8000 en esta cuenta, ¿cuánto habrá en la cuenta después de tres años?

P = $8,000, r = 0.06, t = 3, n = 12

Figura5.3.4: Cálculo para F por ejemplo5.3.3

Así, tendremos $9573.44 en la cuenta mensual compuesta después de tres años.

Interés compuesto mensual te gana $9573.44 - $9564.95 = $8.49 más que intereses compuestos trimestralmente.

Ejemplo5.3.4: Bono de interés compuesto-ahorro

Los abuelos de Sophia le compraron una fianza de ahorro por $200 cuando nació. La tasa de interés fue de 3.28% compuesta semestralmente, y el bono vencería en 30 años. ¿Cuánto valdrá el vínculo de Sophia cuando cumpla 30 años?

P = $200, r = 0.0328, t = 30, n = 2

Figura5.3.5: Cálculo para F por ejemplo5.3.4

El bono de ahorro de Sophia valdrá 530.77 dólares después de 30 años.

Compuesto continuo: El interés se compone infinitamente muchas veces al año.

Fórmula de interés compuesto continuo:

donde,

F = Valor futuro

P = Valor actual

r = Tasa porcentual anual (TAE) cambiada a decimal

t = Número de años

Ejemplo5.3.5: interés compuesto continuo

Isabel invirtió su herencia de 100.000 dólares en una cuenta que ganaba 5.7% de intereses compuestos continuamente durante 20 años. ¿Cuál será su saldo después de 20 años?

P = $100,000, r = 0.057, t = 20

Figura5.3.6: Cálculo para F por ejemplo5.3.5

El saldo de Isabel será de $312,676.84 después de 20 años.

Rendimiento porcentual anual (APY): el porcentaje real por el cual un saldo aumenta en un año.

Ejemplo5.3.6: Rendimiento porcentual anual (APY)

Encuentre el Rendimiento Porcentaje Anual para una cuenta de inversión con
un. 7.7% de interés compuesto mensual
b. 7.7% interés compuesto diario
c. 7.7% interés compuesto continuamente.

Para encontrar APY, es más fácil examinar una inversión de $1 por un año.

  1. P = $1, r = 0.077, t = 1, n = 12

El porcentaje al que se incrementó el $1 fue de 7.9776%. El APY es de 7.9776%.

  1. P = $1, r = 0.077, t = 1, n = 365

El porcentaje al que se incrementó el $1 fue de 8.0033%. El APY es de 8.0033%.

  1. P = $1, r = 0.077, t = 1

El porcentaje al que se incrementó el $1 fue de 8.0042%. El APY es de 8.0042%.


This page titled 5.3: Interés Compuesto is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Maxie Inigo, Jennifer Jameson, Kathryn Kozak, Maya Lanzetta, & Kim Sonier via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?