Saltar al contenido principal
LibreTexts Español

4.3: Ejercicios

  • Page ID
    117644
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Ejercicio\(\PageIndex{1}\)

    Grafica la ecuación en la ventana estándar.

    1. \(y=3x-5\)
    2. \(y=x^2-3x-2\)
    3. \(y= x^4-3x^3+2x-1\)
    4. \(y=\sqrt{x^2-4}\)
    5. \(y=\dfrac 1 {x+2}\)
    6. \(y=|x+3|\)

    Para el último ejercicio, el valor absoluto se obtiene presionando\(\boxed {\text{math}}\boxed {\triangleright } \boxed {\text{enter}}\).

    Responder
    1. clipboard_ec28580a0cb475221ae74f65a7b875a56.png
    2. clipboard_e9639052f0518480c0a6772d864862076.png
    3. clipboard_ea1d7f62ea6557b37425bd10c02a0af69.png
    4. clipboard_e315786a025fabfb35de4054820a7eb18.png
    5. clipboard_e1ec1c2b8561b7e8da1309cb0bed4db69.png
    6. clipboard_e6d7f2f5f1bd0d3db032f5a0fb5a50e62.png

    Ejercicio\(\PageIndex{2}\)

    Resuelve la ecuación para\(y\) y grafica todas las ramas en una misma ventana.

    1. \(x^2+y^2=4\)
    2. \((x+5)^2+y^2=15\)
    3. \((x-1)^2+(y-2)^2 = 9\)
    4. \(y^2+x^2-8x-14=0\)
    5. \(y^2=x^2+3\)
    6. \(y^2=-x^2+77\)
    Responder
    1. \(y_{1}=\sqrt{4-x^{2}}\),\(y_{2}=-\sqrt{4-x^{2}}\),clipboard_e555203ea583554191525d0fc203c89b5.png
    2. \(y_{1}=\sqrt{15-(x+5)^{2}}\),\(y_{2}=-\sqrt{15-(x+5)^{2}}\),clipboard_e036464d3ffa47eb8f571fee5ffbbeeba.png
    3. \(y_1=2+\sqrt{9-(x-1)^{2}}\),\(y_{2}=2-\sqrt{9-(x-1)^{2}}\),clipboard_e0158735c0a9f6b3678a74ddb74b6c1ef.png
    4. \(y_{1}=\sqrt{-x^{2}+8 x+14}\),\(y_2=-\sqrt{-x^{2}+8 x+14}\),clipboard_e4d4e8cce97279d973b5dc08559a13d96.png
    5. \(y_{1}=\sqrt{x^{2}+3}\),\(y_{2}=-\sqrt{x^{2}+3}\),clipboard_e5e95ef043f4e9dc013b8e7d9a601f39e.png
    6. \(y_{1}=\sqrt{-x^{2}+77}\),\(y_{2}=-\sqrt{-x^{2}+77}\),clipboard_e3af58a942e94955990b7dad10906a5f5.png

    Ejercicio\(\PageIndex{3}\)

    Encuentra todos los ceros de la función dada. Redondee su respuesta a la centésima más cercana.

    1. \(f(x)=x^2+3x+1\)
    2. \(f(x)=x^4-3x^2+2\)
    3. \(f(x)=x^3+2x-6\)
    4. \(f(x)=x^5-11x^4+20x^3+88x^2-224x+1\)
    5. \(f(x)=x^3-5x^2+2x+3\)
    6. \(f(x)=\sqrt{2^x-3}-2x+3\)
    7. \(f(x)=0.04 x^3-0.02x^2-0.5174x+0.81\)
    8. \(f(x)=0.04 x^3-0.02x^2-0.5175x+0.81\)
    9. \(f(x)=0.04 x^3-0.02x^2-0.5176x+0.81\)
    Responder
    1. \(x \approx-2.62, x \approx-0.38\)
    2. \(x=\pm 1, x=\pm \sqrt{2} \approx \pm 1.41\)
    3. \(x \approx 1.46\)
    4. \(x \approx-2.83, x \approx 0.01, x \approx 2.82, x \approx 4.01, x \approx 7.00\)
    5. \(x \approx-0.578, x \approx 1.187, x \approx 4.388\)
    6. \(x \approx 1.61, x=2, x \approx 6.91\)
    7. \(x \approx-4.00\)
    8. \(x=-4, x=2.25\)
    9. \(x \approx-4.00, x \approx 2.22, x \approx 2.28\)

    Ejercicio\(\PageIndex{4}\)

    Encuentra todas las soluciones de la ecuación. Redondee su respuesta a la milésima más cercana.

    1. \(x^3+3=x^5+7\)
    2. \(4x^3+6x^2-3x-2=0\)
    3. \(\dfrac{2x}{x-3}=\dfrac{x^2+2}{x+1}\)
    4. \(5^{3x+1}=x^5+6\)
    5. \(x^3+x^2=x^4-x^2+x\)
    6. \(3x^2=x^3-x^2+3x\)
    Responder
    1. \(x \approx-1.488\)
    2. \(x \approx-1.764, x \approx-0.416, x \approx 0.681\)
    3. \(x \approx 5.220\)
    4. \(x \approx-1.431, x \approx 0.038\)
    5. \(x \approx-1.247, x=0, x \approx 0.445, x \approx 1.802\)
    6. \(x=0, x=1, x=3\)

    Ejercicio\(\PageIndex{5}\)

    Grafica la ecuación. Determine cuántos máximos y mínimos tiene la gráfica. Para ello, redimensiona la ventana gráfica (a través de las funciones de zoom, zoom y zoom-box de la calculadora) para acercar los máximos o mínimos del gráfico.

    1. \(y=x^2-4x+13\)
    2. \(y=-x^2+x-20\)
    3. \(y=2x^3 -5x^2+3x\)
    4. \(y=x^4-5x^3+8x^2-5x+1\)
    Responder
    1. Hay un mínimo. Aleje el zoom para la gráfica. clipboard_ea89937a4d3facf7eac223808ff617276.png
    2. Hay un máximo. Redimensiona la ventana a Ymin= −100. clipboard_e3a05feccdf66f88d72b6bb4706e4b099.png
    3. Hay un máximo local y un mínimo local. La gráfica con Xmin=−4, Xmax= 4, Ymin= −2, Ymax= 2 está abajo. clipboard_e89ccc66825465c44830ab3e3a4ec160b.png
    4. Al hacer zoom en la gráfica se revelan dos mínimos locales y un máximo local. Gráficamos la función con Xmin=−2, Xmax= 4, Ymin= −1.3, Ymax= 0.5. clipboard_e679223dd8983c143a017fe9d69087df9.png

    Ejercicio\(\PageIndex{6}\)

    Aproximar los máximos y mínimos (locales) de la gráfica. Redondee su respuesta a la décima más cercana.

    1. \(y=x^3+2x^2-x+1\)
    2. \(y=x^3-5x^2+8x-3\)
    3. \(y=-x^4+3x^3+x^2+2\)
    4. \(y=x^4-x^3-4x^2+6x+2\)
    5. \(y=x^4-x^3-4x^2+8x+2\)
    6. \(y=x^4-x^3-4x^2+7x+2\)
    Responder
    1. clipboard_e29efa53019b5b1a94e684e58e5a6141f.png
    2. clipboard_ed9a91c9ecd139448b4f5e54556561d68.pngclipboard_e82043561f8991ff0f6c44a6fe382b8a9.png
    3. clipboard_e9923bffd128206319d4a7da325631da7.pngclipboard_e1c88d6a252006a41c1b172532849a6a1.png
    4. clipboard_e1077580760809416dee5913010b0f7da.pngclipboard_e39115538cd162dcd08681b7867facf4b.png
    5. clipboard_eab01b98f8b96d5ca97de38f9ed227764.png(solo hay un mínimo y ningún máximo en la parte (e))

    This page titled 4.3: Ejercicios is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.