Saltar al contenido principal
LibreTexts Español

11.3: Ejercicios

  • Page ID
    117682
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Ejercicio\(\PageIndex{1}\)

    Encontrar el dominio, las asíntotas verticales y las discontinuidades removibles de las funciones.

    1. \(f(x)=\dfrac{2}{x-2}\)
    2. \(f(x)=\dfrac{x^2+2}{x^2-6x+8}\)
    3. \(f(x)=\dfrac{3x+6}{x^3-4x}\)
    4. \(f(x)=\dfrac{(x-2)(x+3)(x+4)}{(x-2)^2(x+3)(x-5)}\)
    5. \(f(x)=\dfrac{x-1}{x^3-1}\)
    6. \(f(x)=\dfrac{2}{x^3-2x^2-x+2}\)
    Contestar
    1. dominio\(D = \mathbb{R} − \{2\}\), asíntota vertical en\(x = 2\), sin discontinuidades removibles
    2. \(D = \mathbb{R}−\{2, 4\}\), asíntesis vertical. a\(x = 2\) y\(x = 4\), no descont removible.
    3. \(D = \mathbb{R}− \{−2, 0, 2\}\), asíntesis vertical. a\(x = 0\) y\(x = 2\), descontíon removible.\(x = −2\)
    4. \(D = \mathbb{R} − \{−3, 2, 5\}\), asíntesis vertical. a\(x = 2\) y\(x = 5\), descontíon removible.\(x = −3\)
    5. \(D = \mathbb{R} − \{1\}\), sin asíntesis vertical., descont. removible a\(x = 1\)
    6. \(D = \mathbb{R} − \{−1, 1, 2\}\), asíntesis vertical. a\(x = −1\) y\(x = 1\) y\(x = 2\), no descont removible.

    Ejercicio\(\PageIndex{2}\)

    Encuentra las asíntotas horizontales de las funciones.

    1. \(f(x)=\dfrac{8x^2+2x+1}{2x^2+3x-2}\)
    2. \(f(x)=\dfrac{1}{(x-3)^2}\)
    3. \(f(x)=\dfrac{x^2+3x+2}{x-1}\)
    4. \(f(x)=\dfrac{12x^3-4x+2}{-3x^3+2x^2+1}\)
    Contestar
    1. \(y = 4\)
    2. \(y = 0\)
    3. sin asíntota horizontal (comportamiento asintótico\(y = x + 4\))
    4. \(y = −4\)

    Ejercicio\(\PageIndex{3}\)

    Encuentra las\(x\) - y\(y\) -intercepciones de las funciones.

    1. \(f(x)=\dfrac{x-3}{x-1}\)
    2. \(f(x)=\dfrac{x^3-4x}{x^2-8x+15}\)
    3. \(f(x)=\dfrac{(x-3)(x-1)(x+4)}{(x-2)(x-5)}\)
    4. \(f(x)=\dfrac{x^2+5x+6}{x^2+2x}\)
    Contestar
    1. \(x\)-interceptar en\(x = 3\),\(y\) -interceptar en\(y = 3\)
    2. \(x\)-intercepta en\(x = 0\)\(x = −2\) y y\(x = 2\)\(y\) -interceptar en\(y = 0\)
    3. \(x\)-intercepta en\(x = −4\)\(x = 1\) y y\(x = 3\)\(y\) -interceptar en\(y = \dfrac{6}{5}\)
    4. \(x\)-intercept at\(x = −3\) (pero no at\(x = −2\) ya que no\(f(−2)\) está definido), no\(y\) -intercept ya que no\(f(0)\) está definido

    Ejercicio\(\PageIndex{4}\)

    Esbozar la gráfica de la función\(f\) utilizando el dominio de\(f\), las asíntotas horizontales y verticales, las singularidades removibles, las\(x\) - y\(y\) -intercepciones de la función, junto con un boceto de la gráfica obtenida del calculadora.

    1. \(f(x)=\dfrac{6x-2}{2x+4}\)
    2. \(f(x)=\dfrac{x-3}{x^3-3x^2-6x+8}\)
    3. \(f(x)=\dfrac{x^4-10x^2+9}{x^2-3x+2}\)
    4. \(f(x)=\dfrac{x^3-3x^2-x+3}{x^3-2x^2}\)
    Contestar
    1. \(D = \mathbb{R} − \{2\}\), asíntesis horizontal. \(y = 3\), asíntesis vertical. \(x = −2\), no descont removible.,\(x\) -interceptar en\(x = \dfrac 1 3\),\(y\) -interceptar en\(y = \dfrac{-1}{2}\), graficar:

    clipboard_ecbbba7ef054ee5a490309ff6ad0fbf4b.png

    1. \(f(x)=\dfrac{x-3}{(x-4)(x-1)(x+2)}\)tiene dominio\(D = \mathbb{R} − \{−2, 1, 4\}\), asínmpta horizontal. \(y = 0\), asíntesis vertical. \(x = −2\)y\(x = 1\) y\(x = 4\), no descont removible.,\(x\) -interceptar en\(x = 3\),\(y\) -interceptar en\(y = \dfrac{-3}{8} = −0.375\), graficar:

    clipboard_e0d6db6e49d48f2bad98ab2b86fb86e1b.png

    1. \(f(x)=\dfrac{(x-3)(x+3)(x-1)(x+1)}{(x-2)(x-1)}\)tiene dominio\(D = \mathbb{R} − \{1, 2\}\), sin asíntesis horizontal, asínptica vertical. \(x = 2\), descont. removible en\(x = 1\),\(x\) -interceptar en\(x = −3\) y\(x = −1\) y\(x = 3\),\(y\) -interceptar en\(y = \dfrac 9 2 = 4.5\), graficar:

    clipboard_e3ce9e8190cd29dd861506874a33ab2d1.png

    1. \(f(x)=\dfrac{(x-3)(x-1)(x+1)}{x^{2}(x-2)}\)tiene dominio\(D = \mathbb{R} − \{0, 2\}\), asínmpta horizontal. \(y = 1\), asíntesis vertical. \(x = 0\)y\(x = 2\), sin descont removible.,\(x\) -intercepta en\(x = −1\) y\(x = 1\) y\(x = 3\), no\(y\) -interceptar ya que no\(f(0)\) está definido, graph:

    clipboard_e46938e7afbc22f2db2e88901bdcc36c6.png

    Tenga en cuenta que la gráfica cruza la asíntota horizontal aproximadamente\(x \approx-2.3\) y se acerca\(y = 1\) a la asíntota desde arriba

    Ejercicio\(\PageIndex{5}\)

    Encuentra una función racional\(f\) que satisfaga todas las propiedades dadas.

    1. asíntota vertical en\(x=4\) y asíntota horizontal\(y=0\)
    2. asíntotas verticales en\(x=2\)\(x=3\) y asíntota horizontal\(y=5\)
    3. singularidad removible en\(x=1\) y sin asíntota horizontal
    Contestar
    1. por ejemplo\(f(x)=\dfrac{1}{x-4}\)
    2. por ejemplo\(f(x)=\dfrac{5 x^{2}}{x^{2}-5 x+6}\)
    3. por ejemplo\(f(x)=\dfrac{x^{2}-x}{x-1}\)

    This page titled 11.3: Ejercicios is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.