Saltar al contenido principal
LibreTexts Español

17.3: Ejercicios

  • Page ID
    117826
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Ejercicio\(\PageIndex{1}\)

    Encuentra\(\sin(x)\),\(\cos(x)\), y\(\tan(x)\) para los siguientes ángulos.

    1. \(x=120^\circ\)
    2. \(x=390^\circ\)
    3. \(x=-150^\circ\)
    4. \(x=-45^\circ\)
    5. \(x=1050^\circ\)
    6. \(x=-810^\circ\)
    7. \(x=\dfrac{5\pi}{4}\)
    8. \(x=\dfrac{5\pi}{6}\)
    9. \(x=\dfrac{10\pi}{3}\)
    10. \(x=\dfrac{15\pi}{2}\)
    11. \(x=\dfrac{-\pi}{6}\)
    12. \(x=\dfrac{-54\pi}{8}\)
    Contestar
    1. \(\sin \left(120^{\circ}\right)=\dfrac{\sqrt{3}}{2}, \cos \left(120^{\circ}\right)=-\dfrac{1}{2}, \tan \left(120^{\circ}\right)=-\sqrt{3}\)
    2. \(\sin \left(390^{\circ}\right)=\dfrac{1}{2}, \cos \left(390^{\circ}\right)=\dfrac{\sqrt{3}}{2}, \tan \left(390^{\circ}\right)=\dfrac{\sqrt{3}}{3}\)
    3. \(\sin \left(-150^{\circ}\right)=-\dfrac{1}{2}, \cos \left(-150^{\circ}\right)=-\dfrac{\sqrt{3}}{2}, \tan \left(-150^{\circ}\right)=\dfrac{\sqrt{3}}{3}\)
    4. \(\sin \left(-45^{\circ}\right)=-\dfrac{\sqrt{2}}{2}, \cos \left(-45^{\circ}\right)=\dfrac{\sqrt{2}}{2}, \tan \left(-45^{\circ}\right)=-1\)
    5. \(\sin \left(1050^{\circ}\right)=-\dfrac{1}{2}, \cos \left(1050^{\circ}\right)=\dfrac{\sqrt{3}}{2}, \tan \left(1050^{\circ}\right)=-\dfrac{\sqrt{3}}{3}\)
    6. \(\sin \left(-810^{\circ}\right)=-1, \cos \left(-810^{\circ}\right)=0, \tan \left(-810^{\circ}\right)\)está indefinido
    7. \(\sin \left(\dfrac{5 \pi}{4}\right)=-\dfrac{\sqrt{2}}{2}, \cos \left(\dfrac{5 \pi}{4}\right)=-\dfrac{\sqrt{2}}{2}, \tan \left(\dfrac{5 \pi}{4}\right)=1\)
    8. \(\sin \left(\dfrac{5 \pi}{6}\right)=\dfrac{1}{2}, \cos \left(\dfrac{5 \pi}{6}\right)=-\dfrac{\sqrt{3}}{2}, \tan \left(\dfrac{5 \pi}{6}\right)=-\dfrac{\sqrt{3}}{3}\)
    9. \(\sin \left(\dfrac{10 \pi}{3}\right)=-\dfrac{\sqrt{3}}{2}, \cos \left(\dfrac{10 \pi}{3}\right)=-\dfrac{1}{2}, \tan \left(\dfrac{10 \pi}{3}\right)=\sqrt{3}\)
    10. \(\sin \left(\dfrac{15 \pi}{2}\right)=-1, \cos \left(\dfrac{15 \pi}{2}\right)=0, \tan \left(\dfrac{15 \pi}{2}\right)\)está indefinido
    11. \(\sin \left(\dfrac{-\pi}{6}\right)=-\dfrac{1}{2}, \cos \left(\dfrac{-\pi}{6}\right)=\dfrac{\sqrt{3}}{2}, \tan \left(\dfrac{-\pi}{6}\right)=-\dfrac{\sqrt{3}}{3}\)
    12. \(\sin \left(\dfrac{-54 \pi}{8}\right)=-\dfrac{\sqrt{2}}{2}, \cos \left(\dfrac{-54 \pi}{8}\right)=-\dfrac{\sqrt{2}}{2}, \tan \left(\dfrac{-54 \pi}{8}\right)=1\)

    Ejercicio\(\PageIndex{2}\)

    Grafique la función, y describa cómo se puede obtener la gráfica a partir de una de las gráficas básicas\(y=\sin(x)\),\(y=\cos(x)\), o\(y=\tan(x)\).

    1. \(f(x)=\sin(x)+2\)
    2. \(f(x)=\cos(x-\pi)\)
    3. \(f(x)=\tan(x)-4\)
    4. \(f(x)=5\cdot \sin(x)\)
    5. \(f(x)=\cos(2\cdot x)\)
    6. \(f(x)=\sin(x-2)-5\)
    Contestar
    1. cambio hacia\(y = \sin(x)\) arriba por\(2\)clipboard_e87a9fec74db13512dc88d00c5a408b50.png
    2. \(y = \cos(x)\)desplazado a la derecha\(\pi\)clipboard_ea49e58b7b0e659038bf9635b9ba96f8e.png
    3. \(y = \tan(x)\)desplazado hacia abajo\(4\)clipboard_e4568fbe75b058d26e053e360fb41df95.png
    4. \(y = \sin(x)\)estirado lejos del\(x\) eje -por un factor\(5\)clipboard_ea70bf9f705034f50ed58be4f251a6281.png
    5. \(y = \cos(x)\)comprimido hacia el\(y\) eje -por un factor\(2\)clipboard_e080744b55078ea167a3afba862c78862.png
    6. \(y = \sin(x)\)desplazado hacia la derecha por\(2\) y hacia abajo por\(5\)clipboard_e7b1355ee1b59ad066326d55ba2459d2a.png

    Ejercicio\(\PageIndex{3}\)

    Identificar las fórmulas con las gráficas. \ [\ begin {array} {lll}
    f (x) =\ sin (x) +2, & g (x) =\ tan (x-1), & h (x) =3\ sin (x),\\
    i (x) =3\ cos (x), & j (x) =\ cos (x-\ pi), & k (x) =\ tan (x) -1
    \ end {array}\ nonumber\]

    1. clipboard_ed9f7f6deab20c9a085dbd10a02f684dd.png
    2. clipboard_e020683b23064247032aac69fc1c7a107.png
    3. clipboard_e5469166b94ce909f729ca288a1aed298.png
    4. clipboard_e06decdf4a038417807f651176e3dd831.png
    5. clipboard_e51f2385d56e4e68d886ca212744a7316.png
    6. clipboard_ecf741760cde398a86b7a8ec8776b2587.png
    Contestar
    1. \(g(x)\)
    2. \(h(x)\)
    3. \(j(x)\)
    4. \(k(x)\)
    5. \(i(x)\)
    6. \(f(x)\)

    Ejercicio\(\PageIndex{4}\)

    Encuentra la fórmula de una función cuya gráfica es la que se muestra a continuación.

    1. clipboard_ea430c8007e6555ae5fafacf64920c0b9.png
    2. clipboard_eef7dfc0304d8751afc660afd06d91a26.png
    3. clipboard_e3cdb414f98f2d1e143a135131b7718ba.png
    4. clipboard_ea748c6feb830be4ec4d0323292225119.png
    5. clipboard_ec442cb9f2d0e69954a33c055884fafe1.png
    6. clipboard_ecf5d99db8f8e0d021c4d07ffcfef9c6e.png
    Contestar
    1. \(y = 5 \cos(x)\)
    2. \(y = −5 \cos(x)\)
    3. \(y = −5 \sin(x)\)
    4. \(y = \cos(x) + 5\)
    5. \(y = \sin(x) + 5\)
    6. \(y = 2 \sin(x) + 3\)

    Ejercicio\(\PageIndex{5}\)

    Encuentra la amplitud, el periodo y el desplazamiento de fase de la función.

    1. \(f(x)=5\sin(2x+3)\)
    2. \(f(x)=\sin(\pi x-5)\)
    3. \(f(x)=6\sin(4x)\)
    4. \(f(x)=-2\cos\left(x+\dfrac{\pi}{4}\right)\)
    5. \(f(x)=8\cos(2x-6)\)
    6. \(f(x)=3\sin\left(\dfrac{x}{4}\right)\)
    7. \(f(x)=-\cos(x+2)\)
    8. \(f(x)=7\sin \left(\dfrac{2\pi}{5}x-\dfrac{6\pi}{5}\right)\)
    9. \(f(x)=\cos(-2x)\)
    Contestar
    1. amplitud\(5\), periodo\(\pi\), desplazamiento de fase\(\dfrac{−3}{2}\)
    2. amplitud\(1\), periodo\(2\), desplazamiento de fase\(\dfrac 5 \pi\)
    3. amplitud\(6\), periodo\(\dfrac \pi 2\), desplazamiento de fase\(0\)
    4. amplitud\(2\), periodo\(\dfrac 2 \pi\), desplazamiento de fase\(\dfrac{−\pi}{4}\)
    5. amplitud\(8\), periodo\(\pi\), desplazamiento de fase\(3\)
    6. amplitud\(3\), periodo\(\dfrac 8 \pi\), desplazamiento de fase\(0\)
    7. amplitud\(1\), periodo\(\dfrac 2 \pi\), desplazamiento de fase\(−2\)
    8. amplitud\(7\), periodo\(5\), desplazamiento de fase\(3\)
    9. amplitud\(1\), periodo\(\pi\), desplazamiento de fase\(0\)

    Ejercicio\(\PageIndex{6}\)

    Encuentra la amplitud, el periodo y el desplazamiento de fase de la función. Utilice esta información para graficar la función a lo largo de un periodo completo. Etiquetar todos los máximos, mínimos y ceros de la función.

    1. \(y=5\cos(2x)\)
    2. \(y=4\sin(\pi x)\)
    3. \(y=2\sin\left(\dfrac{2\pi}{3}x\right)\)
    4. \(y=\cos(2x-\pi)\)
    5. \(y=\cos(\pi x-\pi)\)
    6. \(y=-6\cos(-\dfrac{x}{4})\)
    7. \(y=-\cos(4x+\pi)\)
    8. \(y=7\sin\left(x+\dfrac{\pi}{4}\right)\)
    9. \(y=5\cos\left(x+\dfrac{3\pi}{2}\right)\)
    10. \(y=4\sin(5x-\pi)\)
    11. \(y=-3\cos(2\pi x-4)\)
    12. \(y=7\sin\left(\dfrac 1 4 x+\dfrac{\pi}{4}\right)\)
    13. \(y=\cos(3x-4\pi)\)
    14. \(y=2\sin\big(\dfrac 1 5 x-\dfrac{\pi}{10}\big)\)
    15. \(y=\dfrac 1 3 \cos\left(\dfrac{14}{5}x-\dfrac{6\pi}{5}\right)\)
    Contestar
    1. amplitud\(5\), periodo\(\pi\), desplazamiento de fase\(0\)clipboard_e113627ff02d07cc9bea67038b4d8a974.png
    2. amplitud\(4\), periodo\(2\), desplazamiento de fase\(0\)clipboard_edef39b269c155473be986ec93e2577c2.png
    3. amplitud\(2\), periodo\(3\), desplazamiento de fase\(0\)clipboard_e6ab47a8cab9e849a888344707a04ecda.png
    4. amplitud\(1\), periodo\(\pi\), desplazamiento de fase\(\dfrac \pi 2\)clipboard_e64231c2bd27d118a37761a9bddfafb9d.png
    5. amplitud\(1\), periodo\(2\), desplazamiento de fase\(1\)clipboard_e7ec6ef7ac4ef9917dd623cbfe2a5ef3d.png
    6. amplitud\(6\), periodo\(\dfrac 8 \pi \), desplazamiento de fase\(0\)clipboard_ed1774e04d9474194870114a705c9b522.png
    7. amplitud\(1\), periodo\(\dfrac \pi 2\), desplazamiento de fase\(\dfrac {−\pi}{4}\)clipboard_e3eb28effa7317eab90f2b0de9a48367d.png
    8. amplitud\(7\), periodo\(\dfrac 2 \pi\), desplazamiento de fase\(\dfrac {−\pi}{4}\)clipboard_ec0268bfd6521121da67ce54e9eba246b.png
    9. amplitud\(5\), periodo\(\dfrac 2 \pi\), desplazamiento de fase\(\dfrac {−3\pi}{2}\)clipboard_e41db0af7dfe18c464fc5480985a46120.png
    10. amplitud\(4\), periodo\(\dfrac {2\pi}{5}\), desplazamiento de fase\(\dfrac \pi 5\)clipboard_e1fcc37d96d30151b0cf20a260141868c.png
    11. amplitud\(3\), periodo\(1\), desplazamiento de fase\(\dfrac 2 \pi\)clipboard_e6675a6425361cf8d163fd4982cde4056.png
    12. amplitud\(7\), periodo\(\dfrac 8 \pi\), desplazamiento de fase\(-\pi\)clipboard_ea018243cb0d56c545263af605094776f.png
    13. amplitud\(1\), periodo\(\dfrac {2\pi}{3}\), desplazamiento de fase\(\dfrac {4\pi}{3}\)clipboard_e47af696f68a6368c441fb4b5a6f6c833.png
    14. amplitud\(2\), periodo\(\dfrac 10 \pi\), desplazamiento de fase\(\dfrac \pi 2\)clipboard_e32bbf0c4182ae4dc97ce0163f8be391b.png
    15. amplitud\(\dfrac 1 3\), periodo\(\dfrac {5\pi}{7}\), desplazamiento de fase\(\dfrac {3\pi}{7}\)clipboard_ef80d92a6baf65f7530888a753667da1c.png

    This page titled 17.3: Ejercicios is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.