17.3: Ejercicios
- Page ID
- 117826
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Encuentra\(\sin(x)\),\(\cos(x)\), y\(\tan(x)\) para los siguientes ángulos.
- \(x=120^\circ\)
- \(x=390^\circ\)
- \(x=-150^\circ\)
- \(x=-45^\circ\)
- \(x=1050^\circ\)
- \(x=-810^\circ\)
- \(x=\dfrac{5\pi}{4}\)
- \(x=\dfrac{5\pi}{6}\)
- \(x=\dfrac{10\pi}{3}\)
- \(x=\dfrac{15\pi}{2}\)
- \(x=\dfrac{-\pi}{6}\)
- \(x=\dfrac{-54\pi}{8}\)
- Contestar
-
- \(\sin \left(120^{\circ}\right)=\dfrac{\sqrt{3}}{2}, \cos \left(120^{\circ}\right)=-\dfrac{1}{2}, \tan \left(120^{\circ}\right)=-\sqrt{3}\)
- \(\sin \left(390^{\circ}\right)=\dfrac{1}{2}, \cos \left(390^{\circ}\right)=\dfrac{\sqrt{3}}{2}, \tan \left(390^{\circ}\right)=\dfrac{\sqrt{3}}{3}\)
- \(\sin \left(-150^{\circ}\right)=-\dfrac{1}{2}, \cos \left(-150^{\circ}\right)=-\dfrac{\sqrt{3}}{2}, \tan \left(-150^{\circ}\right)=\dfrac{\sqrt{3}}{3}\)
- \(\sin \left(-45^{\circ}\right)=-\dfrac{\sqrt{2}}{2}, \cos \left(-45^{\circ}\right)=\dfrac{\sqrt{2}}{2}, \tan \left(-45^{\circ}\right)=-1\)
- \(\sin \left(1050^{\circ}\right)=-\dfrac{1}{2}, \cos \left(1050^{\circ}\right)=\dfrac{\sqrt{3}}{2}, \tan \left(1050^{\circ}\right)=-\dfrac{\sqrt{3}}{3}\)
- \(\sin \left(-810^{\circ}\right)=-1, \cos \left(-810^{\circ}\right)=0, \tan \left(-810^{\circ}\right)\)está indefinido
- \(\sin \left(\dfrac{5 \pi}{4}\right)=-\dfrac{\sqrt{2}}{2}, \cos \left(\dfrac{5 \pi}{4}\right)=-\dfrac{\sqrt{2}}{2}, \tan \left(\dfrac{5 \pi}{4}\right)=1\)
- \(\sin \left(\dfrac{5 \pi}{6}\right)=\dfrac{1}{2}, \cos \left(\dfrac{5 \pi}{6}\right)=-\dfrac{\sqrt{3}}{2}, \tan \left(\dfrac{5 \pi}{6}\right)=-\dfrac{\sqrt{3}}{3}\)
- \(\sin \left(\dfrac{10 \pi}{3}\right)=-\dfrac{\sqrt{3}}{2}, \cos \left(\dfrac{10 \pi}{3}\right)=-\dfrac{1}{2}, \tan \left(\dfrac{10 \pi}{3}\right)=\sqrt{3}\)
- \(\sin \left(\dfrac{15 \pi}{2}\right)=-1, \cos \left(\dfrac{15 \pi}{2}\right)=0, \tan \left(\dfrac{15 \pi}{2}\right)\)está indefinido
- \(\sin \left(\dfrac{-\pi}{6}\right)=-\dfrac{1}{2}, \cos \left(\dfrac{-\pi}{6}\right)=\dfrac{\sqrt{3}}{2}, \tan \left(\dfrac{-\pi}{6}\right)=-\dfrac{\sqrt{3}}{3}\)
- \(\sin \left(\dfrac{-54 \pi}{8}\right)=-\dfrac{\sqrt{2}}{2}, \cos \left(\dfrac{-54 \pi}{8}\right)=-\dfrac{\sqrt{2}}{2}, \tan \left(\dfrac{-54 \pi}{8}\right)=1\)
Grafique la función, y describa cómo se puede obtener la gráfica a partir de una de las gráficas básicas\(y=\sin(x)\),\(y=\cos(x)\), o\(y=\tan(x)\).
- \(f(x)=\sin(x)+2\)
- \(f(x)=\cos(x-\pi)\)
- \(f(x)=\tan(x)-4\)
- \(f(x)=5\cdot \sin(x)\)
- \(f(x)=\cos(2\cdot x)\)
- \(f(x)=\sin(x-2)-5\)
- Contestar
-
- cambio hacia\(y = \sin(x)\) arriba por\(2\)
- \(y = \cos(x)\)desplazado a la derecha\(\pi\)
- \(y = \tan(x)\)desplazado hacia abajo\(4\)
- \(y = \sin(x)\)estirado lejos del\(x\) eje -por un factor\(5\)
- \(y = \cos(x)\)comprimido hacia el\(y\) eje -por un factor\(2\)
- \(y = \sin(x)\)desplazado hacia la derecha por\(2\) y hacia abajo por\(5\)
Identificar las fórmulas con las gráficas. \ [\ begin {array} {lll}
f (x) =\ sin (x) +2, & g (x) =\ tan (x-1), & h (x) =3\ sin (x),\\
i (x) =3\ cos (x), & j (x) =\ cos (x-\ pi), & k (x) =\ tan (x) -1
\ end {array}\ nonumber\]
- Contestar
-
- \(g(x)\)
- \(h(x)\)
- \(j(x)\)
- \(k(x)\)
- \(i(x)\)
- \(f(x)\)
Encuentra la fórmula de una función cuya gráfica es la que se muestra a continuación.
- Contestar
-
- \(y = 5 \cos(x)\)
- \(y = −5 \cos(x)\)
- \(y = −5 \sin(x)\)
- \(y = \cos(x) + 5\)
- \(y = \sin(x) + 5\)
- \(y = 2 \sin(x) + 3\)
Encuentra la amplitud, el periodo y el desplazamiento de fase de la función.
- \(f(x)=5\sin(2x+3)\)
- \(f(x)=\sin(\pi x-5)\)
- \(f(x)=6\sin(4x)\)
- \(f(x)=-2\cos\left(x+\dfrac{\pi}{4}\right)\)
- \(f(x)=8\cos(2x-6)\)
- \(f(x)=3\sin\left(\dfrac{x}{4}\right)\)
- \(f(x)=-\cos(x+2)\)
- \(f(x)=7\sin \left(\dfrac{2\pi}{5}x-\dfrac{6\pi}{5}\right)\)
- \(f(x)=\cos(-2x)\)
- Contestar
-
- amplitud\(5\), periodo\(\pi\), desplazamiento de fase\(\dfrac{−3}{2}\)
- amplitud\(1\), periodo\(2\), desplazamiento de fase\(\dfrac 5 \pi\)
- amplitud\(6\), periodo\(\dfrac \pi 2\), desplazamiento de fase\(0\)
- amplitud\(2\), periodo\(\dfrac 2 \pi\), desplazamiento de fase\(\dfrac{−\pi}{4}\)
- amplitud\(8\), periodo\(\pi\), desplazamiento de fase\(3\)
- amplitud\(3\), periodo\(\dfrac 8 \pi\), desplazamiento de fase\(0\)
- amplitud\(1\), periodo\(\dfrac 2 \pi\), desplazamiento de fase\(−2\)
- amplitud\(7\), periodo\(5\), desplazamiento de fase\(3\)
- amplitud\(1\), periodo\(\pi\), desplazamiento de fase\(0\)
Encuentra la amplitud, el periodo y el desplazamiento de fase de la función. Utilice esta información para graficar la función a lo largo de un periodo completo. Etiquetar todos los máximos, mínimos y ceros de la función.
- \(y=5\cos(2x)\)
- \(y=4\sin(\pi x)\)
- \(y=2\sin\left(\dfrac{2\pi}{3}x\right)\)
- \(y=\cos(2x-\pi)\)
- \(y=\cos(\pi x-\pi)\)
- \(y=-6\cos(-\dfrac{x}{4})\)
- \(y=-\cos(4x+\pi)\)
- \(y=7\sin\left(x+\dfrac{\pi}{4}\right)\)
- \(y=5\cos\left(x+\dfrac{3\pi}{2}\right)\)
- \(y=4\sin(5x-\pi)\)
- \(y=-3\cos(2\pi x-4)\)
- \(y=7\sin\left(\dfrac 1 4 x+\dfrac{\pi}{4}\right)\)
- \(y=\cos(3x-4\pi)\)
- \(y=2\sin\big(\dfrac 1 5 x-\dfrac{\pi}{10}\big)\)
- \(y=\dfrac 1 3 \cos\left(\dfrac{14}{5}x-\dfrac{6\pi}{5}\right)\)
- Contestar
-
- amplitud\(5\), periodo\(\pi\), desplazamiento de fase\(0\)
- amplitud\(4\), periodo\(2\), desplazamiento de fase\(0\)
- amplitud\(2\), periodo\(3\), desplazamiento de fase\(0\)
- amplitud\(1\), periodo\(\pi\), desplazamiento de fase\(\dfrac \pi 2\)
- amplitud\(1\), periodo\(2\), desplazamiento de fase\(1\)
- amplitud\(6\), periodo\(\dfrac 8 \pi \), desplazamiento de fase\(0\)
- amplitud\(1\), periodo\(\dfrac \pi 2\), desplazamiento de fase\(\dfrac {−\pi}{4}\)
- amplitud\(7\), periodo\(\dfrac 2 \pi\), desplazamiento de fase\(\dfrac {−\pi}{4}\)
- amplitud\(5\), periodo\(\dfrac 2 \pi\), desplazamiento de fase\(\dfrac {−3\pi}{2}\)
- amplitud\(4\), periodo\(\dfrac {2\pi}{5}\), desplazamiento de fase\(\dfrac \pi 5\)
- amplitud\(3\), periodo\(1\), desplazamiento de fase\(\dfrac 2 \pi\)
- amplitud\(7\), periodo\(\dfrac 8 \pi\), desplazamiento de fase\(-\pi\)
- amplitud\(1\), periodo\(\dfrac {2\pi}{3}\), desplazamiento de fase\(\dfrac {4\pi}{3}\)
- amplitud\(2\), periodo\(\dfrac 10 \pi\), desplazamiento de fase\(\dfrac \pi 2\)
- amplitud\(\dfrac 1 3\), periodo\(\dfrac {5\pi}{7}\), desplazamiento de fase\(\dfrac {3\pi}{7}\)