Saltar al contenido principal
LibreTexts Español

19.2: Ejercicios

  • Page ID
    117695
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Ejercicio\(\PageIndex{1}\)

    Grafica la función con la calculadora. Usa el modo radián y grado para mostrar tu gráfica. Haga zoom a una ventana apropiada para cada modo para mostrar una gráfica que incluya las características principales de la gráfica.

    1. \(y=\sin^{-1}(x)\)
    2. \(y=\cos^{-1}(x)\)
    3. \( y=\tan^{-1}(x)\)
    Contestar
    1. clipboard_e4c73a7e5ee509f3cac908fdd712db817.png\(\begin{aligned}&-2 \leq x \leq 2 \\&-2 \leq y \leq 2\end{aligned}\)
    2. clipboard_ec15b01d8fc10b8828825274f03238602.png\(\begin{aligned}&-2 \leq x \leq 2 \\&-1 \leq y \leq 4\end{aligned} \)
    3. clipboard_e8d1a15881b5138fab8bbb49f7cdde065.png\(\begin{aligned}-10 & \leq x \leq 10 \\-2 & \leq y \leq 2\end{aligned} \)

    Ejercicio\(\PageIndex{2}\)

    Encuentra el valor exacto de la función trigonométrica inversa.

    1. \(\tan^{-1}(\sqrt{3})\)
    2. \(\sin^{-1}\left(\dfrac{1}{2}\right)\)
    3. \(\cos^{-1}\left(\dfrac{1}{2}\right)\)
    4. \(\tan^{-1}(0)\)
    5. \(\cos^{-1}\left(\dfrac{\sqrt{2}}{2}\right)\)
    6. \(\cos^{-1}\left(-\dfrac{\sqrt{2}}{2}\right)\)
    7. \(\sin^{-1}(-1)\)
    8. \(\tan^{-1}(-\sqrt{3})\)
    9. \(\cos^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)\)
    10. \(\sin^{-1}\left(-\dfrac{\sqrt{2}}{2}\right)\)
    11. \(\sin^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)\)
    12. \(\tan^{-1}\left(-\dfrac{1}{\sqrt{3}}\right)\)
    Contestar
    1. \(\dfrac{\pi}{3}\)
    2. \(\dfrac{\pi}{6}\)
    3. \(\dfrac{\pi}{3}\)
    4. \(0\)
    5. \(\dfrac{\pi}{4}\)
    6. \(\dfrac{3\pi}{4}\)
    7. \(-\dfrac{\pi}{2}\)
    8. \(-\dfrac{\pi}{3}\)
    9. \(\dfrac{5 \pi}{6}\)
    10. \(-\dfrac{\pi}{4}\)
    11. \(-\dfrac{\pi}{3}\)
    12. \(-\dfrac{\pi}{6}\)

    Ejercicio\(\PageIndex{3}\)

    Encuentra el valor de la función trigonométrica inversa usando la calculadora. Aproxime su respuesta a la centésima más cercana.

    Para las partes (a) - (f), escribe tu respuesta en modo radián.

    1. \(\cos^{-1}(0.2)\)
    2. \(\sin^{-1}(-0.75)\)
    3. \(\cos^{-1}\left(\dfrac{1}{3}\right)\)
    4. \(\tan^{-1}(100,000)\)
    5. \(\tan^{-1}(-2)\)
    6. \(\cos^{-1}(-2)\)

    Para las partes (g) - (l), escribe tu respuesta en modo grado.

    1. \(\cos^{-1}(0.68)\)
    2. \(\tan^{-1}(-1)\)
    3. \(\sin^{-1}\left(\dfrac{\sqrt{2}+\sqrt{6}}{4}\right)\)
    4. \(\tan^{-1}(100,000)\)
    5. \(\cos^{-1}\left(\dfrac{\sqrt{2-\sqrt{2}}}{2}\right)\)
    6. \(\tan^{-1}(2+\sqrt{3}-\sqrt{6}-\sqrt{2})\)
    Contestar
    1. \(1.37\)
    2. \(−0.85\)
    3. \(1.23\)
    4. \(1.57\)
    5. \(−1.11\)
    6. undefined
    7. \(47.16^{\circ}\)
    8. \(-45^{\circ}\)
    9. \(75^{\circ}\)
    10. \(90.00^{\circ}\)
    11. \(67.5^{\circ}\)
    12. \(-7.5^{\circ}\)

    This page titled 19.2: Ejercicios is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.