27.4: Revisión de funciones trigonométricas
- Page ID
- 117667
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Rellene todos los valores de las funciones trigonométricas en la siguiente tabla.
\ [\ begin {array} {c||c|c|c|c|c}
& 0 &\ dfrac {\ pi} {6} &\ dfrac {\ pi} {4} &\ dfrac {\ pi} {3} &\ dfrac {\ pi} {2}\
\ hline\ hline\ hline\ sin (x) & & & &
\\ hline\ cos (x) & & & & &\
\ hline\ tan (x) & & amp; & & &
\ end {array}\ nonumber\]
- Contestar
-
\ (\ begin {array} {c||c|c|c|c|c}
x & 0=0^ {\ circ} &\ dfrac {\ pi} {6} =30^ {\ circ} &\ dfrac {\ pi} {4} =45^ {\ circ} &\ dfrac {\ pi} {3} =60^ {\ circ} &\ dfrac {\ pi} {2} =90^ {\ circ}\\ hline
\ hline\ hline\ sin (x) & 0 &\ dfrac {1} {2} &\ dfrac {\ sqrt {2}} {2} &\ dfrac {\ sqrt { 3}} {2} & 1\
\ hline\ cos (x) & 1 &\ dfrac {\ sqrt {3}} {2} &\ dfrac {\ sqrt {2}} {2} &\ dfrac {1} {2} & 0\
\ hline\ tan (x) & 0 &\ dfrac {\ sqrt {3}} {3} & 1 &\ sqrt {3} &\ text {undef.}
\ end {array}\)
Encuentra los valores exactos de
- \(\cos\left(-\dfrac{\pi}{6}\right)\)
- \(\sin\left(-\dfrac{\pi}{4}\right)\)
- \(\tan\left(-\dfrac{\pi}{3}\right)\)
- Contestar
-
- \(\dfrac{\sqrt{3}}{2}\)
- \(\dfrac{-\sqrt{2}}{2}\)
- \(-\sqrt{3}\)
Encuentra el valor exacto de la función trigonométrica.
- \(\sin\left(\dfrac{5\pi}{4}\right)\)
- \(\cos\left(\dfrac{11\pi}{6}\right)\)
[Pista: Usa el especial\(45^\circ-45^\circ-90^\circ\) o\(30^\circ-60^\circ-90^\circ\) triángulos para encontrar la solución.]
- Contestar
-
- \(\dfrac{-\sqrt{2}}{2}\)
- \(\dfrac{\sqrt{3}}{2}\)
Encuentra la amplitud, el periodo y el desplazamiento de fase de la función dada. Dibuja la gráfica en un intervalo de un periodo. Etiquetar todos los máximos, mínimos e intercepciones.
- \(y=3 \cos\left(4 x-\pi\right)\)
- \(y=-5\sin\left(x+\dfrac{\pi}{2}\right)\)
- Contestar
-
- amplitud\(3\), periodo\(\dfrac{\pi}{2}\), desplazamiento de fase\(\dfrac{\pi}{4}\)
- amplitud\(5\), periodo\(2\pi \), desplazamiento de fase\(\dfrac{-\pi}{2}\)
- amplitud\(3\), periodo\(\dfrac{\pi}{2}\), desplazamiento de fase\(\dfrac{\pi}{4}\)
Encuentra el valor exacto de la función trigonométrica.
- \(\cos\left(\dfrac{\pi}{12}\right)\)[Pista: Utilice las fórmulas de suma y resta de ángulos.]
- \(\cos\left(\dfrac{3\pi}{8}\right)\)[Pista: Usa las fórmulas de medio ángulos.]
- Contestar
-
- \(\dfrac{\sqrt{2}+\sqrt{6}}{4}\)
- \(\dfrac{\sqrt{2-\sqrt{2}}}{2}\)
Dejemos\(\sin(\alpha)=-\dfrac{4}{5}\) y dejemos\(\alpha\) estar en el cuadrante III. Encontrar\(\sin(2\alpha)\),\(\cos(2\alpha)\), y\(\tan(2\alpha)\).
- Contestar
-
\(\sin (2 \alpha)=\dfrac{24}{25}, \cos (2 \alpha)=\dfrac{-7}{25}, \tan (2 \alpha)=\dfrac{-24}{7}\)
Encuentra el valor exacto de:
- \(\sin^{-1}\left(-\dfrac{1}{2}\right)\)
- \(\cos^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)\)
- \(\tan^{-1}\left(-\dfrac{\sqrt{3}}{3}\right)\)
- Contestar
-
- \(\dfrac{-\pi}{6}\)
- \(\dfrac{5 \pi}{6}\)
- \(\dfrac{-\pi}{6}\)
Resolver para\(x\):\(2\sin(x)+\sqrt{3}=0\)
- Contestar
-
\(x=(-1)^{n+1} \dfrac{\pi}{3}+n \pi\), donde\(n=0, \pm 1, \ldots \)
Resolver para\(x\):\(\tan^2(x)-1=0\)
- Contestar
-
\(x=\pm \dfrac{\pi}{4}+n \pi \)donde\(n=0, \pm 1, \ldots \)
Resolver para\(x\).
- \(2\cos^2(x)-1=0\)
- \(2\sin^2(x)+15\sin(x)+7=0\)
- Contestar
-
- \(x=\pm \dfrac{\pi}{4}+2 n \pi\)o\(x=\pm \dfrac{3 \pi}{4}+2 n \pi\) donde\(n=0, \pm 1, \ldots\)
- \((-1)^{n+1} \dfrac{\pi}{6}+n \pi\)donde\(n=0, \pm 1, \ldots\)