Saltar al contenido principal
LibreTexts Español

1.2.1: Ejercicios 1.2

  • Page ID
    113956
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Términos y Conceptos

    Ejercicio\(\PageIndex{1}\)

    ¿Qué significa “la función\(f(t)\)” tell you that “the function \(f\)” does not?

    Contestar

    Nos dice que\(t\) is the input for the function \(f\).

    Ejercicio\(\PageIndex{2}\)

    T/F: Si\(g(x)=x^2\), then \(g(2)=g(-2)\).

    Contestar

    Cierto

    Ejercicio\(\PageIndex{3}\)

    T/F: No se pueden combinar funciones usando tanto composición como cocientes en una misma función.

    Contestar

    Falso

    Ejercicio\(\PageIndex{4}\)

    T/F: En la combinación\(g(f(x))\), \(f(x)\) is the input for \(g(x)\).

    Contestar

    Cierto

    Problemas

    Vamos\(f(x) = x^{3}\),\(g(x) = x + 4\), y\(h(x) = \sin (x)\). Cada ejercicio\(\PageIndex{5}\)\(\PageIndex{8}\) es alguna combinación de\(f(x)\),\(g(x)\), y\(h(x)\). Determine el tipo de combinación y escríbelo usando la notación de funciones. Por ejemplo,\(x^{3} + x + 4\) es la adición de\(f(x)\) y\(g(x)\) y se puede escribir como\(f(x) + g(x)\).

    Ejercicio\(\PageIndex{5}\)

    \(\frac{x^3}{\sin{(x)}}\)

    Contestar

    Cociente de\(f(x)\) and \(h(x)\); \(\frac{f(x)}{h(x)}\)

    Ejercicio\(\PageIndex{6}\)

    \(\sin{(x+4)}\)

    Contestar

    Composición de\(h(x)\) with \(g(x)\); \(h(g(x))\)

    Ejercicio\(\PageIndex{7}\)

    \(\sin{(x)}+4\)

    Contestar

    Composición de\(g(x)\) with \(h(x)\); \(g(h(x))\)

    Ejercicio\(\PageIndex{8}\)

    \((2x^3)(x+4)\)

    Contestar

    Producto de un múltiplo escalar de\(f(x)\) with \(g(x)\); \((2f(x))(g(x))\)

    En ejercicios\(\PageIndex{9}\)\(\PageIndex{11}\), determinar la variable de entrada de cada función, cualquier parámetro de la función y el tipo de función.

    Ejercicio\(\PageIndex{9}\)

    \(C(A) = \frac{k \epsilon_0 A}{d}\)

    Contestar

    La variable de entrada es\(A\). The parameters are \(k\), \(\epsilon_0\), and \(d\). This is a monomial of degree 1.

    Ejercicio\(\PageIndex{10}\)

    \(v(t) = -9.8t + v_0\)

    Contestar

    La variable de entrada es\(t\). The only parameter is \(v_0\). This is a polynomial of degree 1.

    Ejercicio\(\PageIndex{11}\)

    \(A(t)=P(1+\frac{r}{n})^{nt}\)

    Contestar

    La variable de entrada es\(t\). The parameters are \(P\), \(r\), and \(n\). This is an exponential function.

    En ejercicios\(\PageIndex{12}\)\(\PageIndex{17}\), evaluar la expresión dada.

    Ejercicio\(\PageIndex{12}\)

    Dado\(f(x)=2x^2\) and \(g(x)=x-b\), find \(5f(3a)-g(4)\)

    Contestar

    \(90a^2-4+b\)

    Ejercicio\(\PageIndex{13}\)

    Dado\(f(x)=x^2-3\) and \(g(x)=x-b\), find \(f(y+h)-3g(5)\)

    Contestar

    \(y^2+2yh+h^2-18+3b\)

    Ejercicio\(\PageIndex{14}\)

    Dado\(f(x)=5-x\) and \(g(x)=-x^4+p\), find \(f(y+h)-3g(y)\)

    Contestar

    \(5-y-h+3y^4-3p\)

    Ejercicio\(\PageIndex{15}\)

    Dado\(f(\theta)=\frac{\theta+3}{\theta-2}\) and \(g(\theta)=\theta^2+4\), find \(g(f(3))\)

    Contestar

    \(40\)

    Ejercicio\(\PageIndex{16}\)

    Dado\(g(x)=x^2-4\) and \(f(x)=\sqrt{x+8}\), find \(g(x+h)-2f(8)\)

    Contestar

    \(x^2+2xh+h^2-12\)

    Ejercicio\(\PageIndex{17}\)

    Dado\(f(y)=y-5\) and \(g(y)=h-y^2\), find \(g(f(y))-f(g(y))\)

    Contestar

    \(10y-20\)

    En ejercicios\(\PageIndex{18}\)\(\PageIndex{21}\), determinar el cociente de diferencia de cada una de las siguientes funciones.

    Ejercicio\(\PageIndex{18}\)

    \(h(r)=2r+4\)

    Contestar

    \(2\)

    Ejercicio\(\PageIndex{19}\)

    \(g(y)=4y-7\)

    Contestar

    \(4\)

    Ejercicio\(\PageIndex{20}\)

    \(y(x)=x^2+6\)

    Contestar

    \(2x+h\)

    Ejercicio\(\PageIndex{21}\)

    \(f(t)=4t^2+x\)

    Contestar

    \(8t+4h\)


    This page titled 1.2.1: Ejercicios 1.2 is shared under a CC BY-NC license and was authored, remixed, and/or curated by Amy Givler Chapman, Meagan Herald, Jessica Libertini.