Saltar al contenido principal
LibreTexts Español

1.4.1: Ejercicios 1.4

  • Page ID
    113941
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Términos y Conceptos

    Ejercicio\(\PageIndex{1}\)

    ¿Se aplican las reglas de exponente a las funciones raíz? Explique.

    Contestar

    Sí, una función raíz es solo una función de potencia con un exponente fraccionario.

    Ejercicio\(\PageIndex{2}\)

    Explique por qué un exponente negativo mueve el término al denominador y le da un exponente positivo.

    Contestar

    Un exponente positivo significa que estamos multiplicando ese término repetidamente, un exponente negativo significa que estamos dividiendo por ese término repetidamente.

    Ejercicio\(\PageIndex{3}\)

    Es\(3x(2x+3)^{-5/3}\) in radical or exponential form?

    Contestar

    Forma exponencial

    Ejercicio\(\PageIndex{4}\)

    Es\(\displaystyle \frac{3x}{\sqrt[3]{(2x+3)^5}}\) in radical or exponential form?

    Contestar

    Forma radical

    Problemas

    En ejercicios\(\PageIndex{5}\) -\(\PageIndex{7}\), escribir el término dado sin utilizar exponentes.

    Ejercicio\(\PageIndex{5}\)

    \(\displaystyle (8x_1-5x_2+11)^{-1/3}\)

    Contestar

    \(\displaystyle \frac{1}{\sqrt[3]{8x_1-5x_2+11}}\)

    Ejercicio\(\PageIndex{6}\)

    \(\displaystyle (-2x+y)^{-1/5}\)

    Contestar

    \(\displaystyle \frac{1}{\sqrt[5]{-2x+y}}\)

    Ejercicio\(\PageIndex{7}\)

    \(\displaystyle (5x-2)^{1/4}\)

    Contestar

    \(\displaystyle \sqrt[4]{5x-2}\)

    En ejercicios\(\PageIndex{8}\) -\(\PageIndex{10}\), simplificar y escribir el término dado sin usar radicales.

    Ejercicio\(\PageIndex{8}\)

    \(\displaystyle \Bigg( \sqrt{x} + \frac{1}{\sqrt{x}} \Bigg)^2\)

    Contestar

    \(\displaystyle x + 2 + \frac{1}{x}\)

    Ejercicio\(\PageIndex{9}\)

    \(\displaystyle (\sqrt{x})^2 + \Bigg(\frac{1}{\sqrt{x}} \Bigg)^2\)

    Contestar

    \(\displaystyle x + \frac{1}{x}\)

    Ejercicio\(\PageIndex{10}\)

    \(\displaystyle \Bigg(\sqrt[3]{x} +1 \Bigg)^3\)

    Contestar

    \(\displaystyle x + 3x^{2/3} + 3x^{1/3} + 1\)

    En ejercicios\(\PageIndex{11}\) -\(\PageIndex{17}\), simplifica el término dado y escribe tu respuesta sin exponentes negativos.

    Ejercicio\(\PageIndex{11}\)

    \(\displaystyle \Bigg( \frac{-5x^{-1/4}y^3}{x^{1/4}y^{1/2}}\Bigg)^2\)

    Contestar

    \(\displaystyle \frac{25y^5}{x}, y \neq 0\)

    Ejercicio\(\PageIndex{12}\)

    \(\displaystyle \Bigg( \frac{-2x^{2/3}y^2}{x^{-2}y^{1/2}}\Bigg)^6\)

    Contestar

    \(\displaystyle 64x^{16}y^9; x,y \neq 0\)

    Ejercicio\(\PageIndex{13}\)

    \(\displaystyle \Bigg( \frac{-3s^{2/3}t^2}{4s^3t^{5/3}}\Bigg)^3\)

    Contestar

    \(\displaystyle \frac{-27t}{64s^7}, t\neq 0\)

    Ejercicio\(\PageIndex{14}\)

    \(\displaystyle -3(x^2+4x+4)^{-4}(2x+4)\)

    Contestar

    \(\displaystyle \frac{-6}{(x+2)^7}\)

    Ejercicio\(\PageIndex{15}\)

    \(\displaystyle \frac{1}{3}(x^4)^{-2/3}(4x^3)\)

    Contestar

    \(\displaystyle \frac{4x^{1/3}}{3}\)

    Ejercicio\(\PageIndex{16}\)

    \(\displaystyle \frac{(e^{x+3})^2}{e^{-x}}\)

    Contestar

    \(\displaystyle e^{3x+6}\)

    Ejercicio\(\PageIndex{17}\)

    \(\displaystyle \frac{e^{x^2-1}}{e^{x+1}}\)

    Contestar

    \(\displaystyle e^{x^2-x-2}\)

    En ejercicios\(\PageIndex{18}\) -\(\PageIndex{20}\), simplificar y escribir el término dado en forma exponencial.

    Ejercicio\(\PageIndex{18}\)

    \(\displaystyle \frac{4x-1}{\sqrt[3]{(3x+2)^2}}\)

    Contestar

    \(\displaystyle (4x-1)(3x+2)^{-2/3}\)

    Ejercicio\(\PageIndex{19}\)

    \(\displaystyle \sqrt[3]{\Bigg(\frac{e^{4\theta-6}y^2}{e^{\theta}y^{-4}}\Bigg)}\)

    Contestar

    \(\displaystyle e^{\theta-2}y^2, y \neq 0\)

    Ejercicio\(\PageIndex{20}\)

    \(\displaystyle \sqrt[4]{\Bigg(\frac{x^2y^5}{y^{-3}}\Bigg)^2}\)

    Contestar

    \(\displaystyle xy^4, y\neq 0\)


    This page titled 1.4.1: Ejercicios 1.4 is shared under a CC BY-NC license and was authored, remixed, and/or curated by Amy Givler Chapman, Meagan Herald, Jessica Libertini.