Saltar al contenido principal
LibreTexts Español

10.6: La transformación de las variables termodinámicas en general

  • Page ID
    74538
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Supongamos que\(M\)\(Q\),\(R\),\(X\), y\(Y\) son funciones estatales y que conocemos los diferenciales totales

    \[dM={\left(\dfrac{\partial M}{\partial X}\right)}_YdX+{\left(\dfrac{\partial M}{\partial Y}\right)}_XdY\]

    \[dQ={\left(\dfrac{\partial Q}{\partial X}\right)}_YdX+{\left(\dfrac{\partial Q}{\partial Y}\right)}_XdY\]

    \[dR={\left(\dfrac{\partial R}{\partial X}\right)}_YdX+{\left(\dfrac{\partial R}{\partial Y}\right)}_XdY \nonumber \]

    Para encontrar el diferencial total de\(M\left(Q,R\right)\),

    \[dM={\left(\dfrac{\partial M}{\partial Q}\right)}_RdQ+{\left(\dfrac{\partial M}{\partial R}\right)}_QdR\]

    resolvemos los diferenciales totales de\(Q\left(X,Y\right)\) y\(R\left(X,Y\right)\) para encontrar\(dX\) y\(dY\) en términos de\(dQ\) y\(dR\). Dado que\(dQ\) y\(dR\) son ecuaciones simultáneas en las variables\(dX\) y\(dY\), podemos aplicar la regla de Cramer para obtener

    \[dX=\dfrac{\left| \begin{array}{cc} dQ & {\left({\partial Q}/{\partial Y}\right)}_X \\ dR & {\left({\partial R}/{\partial Y}\right)}_X \end{array} \right|}{J\left(\dfrac{Q,R}{X,Y}\right)}=\dfrac{{\left(\dfrac{\partial R}{\partial Y}\right)}_XdQ-{\left(\dfrac{\partial Q}{\partial Y}\right)}_XdR}{J\left(\dfrac{Q,R}{X,Y}\right)}\]

    y

    \[dY=\dfrac{\left| \begin{array}{cc} {\left({\partial Q}/{\partial X}\right)}_Y & dQ \\ {\left({\partial R}/{\partial X}\right)}_Y & dR \end{array} \right|}{J\left(\dfrac{Q,R}{X,Y}\right)}=\dfrac{{-\left(\dfrac{\partial R}{\partial X}\right)}_YdQ+{\left(\dfrac{\partial Q}{\partial X}\right)}_YdR}{J\left(\dfrac{Q,R}{X,Y}\right)}\]

    donde\(J\left({\left(Q,R\right)}/{\left(X,Y\right)}\right)\) es el jacobiano de la transformación de variables\(X\) y\(Y\) a variables\(\ Q\) y\(R\):

    \[\begin{align*} J\left(\dfrac{Q,R}{X,Y}\right) &= \left| \begin{array}{cc} {\left({\partial Q}/{\partial X}\right)}_Y & {\left({\partial Q}/{\partial Y}\right)}_X \\ {\left({\partial R}/{\partial X}\right)}_Y & {\left({\partial R}/{\partial Y}\right)}_X \end{array} \right| \\[4pt] &= {\left(\dfrac{\partial Q}{\partial X}\right)}_Y{\left(\dfrac{\partial R}{\partial Y}\right)}_X + {\left(\dfrac{\partial Q}{\partial Y}\right)}_X{\left(\dfrac{\partial R}{\partial X}\right)}_Y \end{align*}\]

    Para encontrar

    \[dM={\left(\dfrac{\partial M}{\partial Q}\right)}_RdQ+{\left(\dfrac{\partial M}{\partial R}\right)}_QdR\]

    Sustituimos estos resultados por\(dX\) y\(dY\) en el diferencial total de\(M=M\left(X,Y\right):\)

    \[\begin{aligned} dM &={\left(\dfrac{\partial M}{\partial X}\right)}_YdX+{\left(\dfrac{\partial M}{\partial Y}\right)}_XdY \\[4pt] &=\dfrac{{\left(\dfrac{\partial M}{\partial X}\right)}_Y\left[{\left(\dfrac{\partial R}{\partial Y}\right)}_XdQ-{\left(\dfrac{\partial Q}{\partial Y}\right)}_XdR\right]}{J\left(\dfrac{Q,R}{X,Y}\right)}+\dfrac{{\left(\dfrac{\partial M}{\partial Y}\right)}_X\left[{-\left(\dfrac{\partial R}{\partial X}\right)}_YdQ+{\left(\dfrac{\partial Q}{\partial X}\right)}_YdR\right]}{J\left(\dfrac{Q,R}{X,Y}\right)} \\[4pt] &=\left[\dfrac{{\left(\dfrac{\partial M}{\partial X}\right)}_Y{\left(\dfrac{\partial R}{\partial Y}\right)}_X-{\left(\dfrac{\partial M}{\partial Y}\right)}_X{\left(\dfrac{\partial R}{\partial X}\right)}_Y}{J\left(\dfrac{Q,R}{X,Y}\right)}\right]dQ +\left[\dfrac{-{\left(\dfrac{\partial M}{\partial X}\right)}_Y{\left(\dfrac{\partial Q}{\partial Y}\right)}_X+{\left(\dfrac{\partial M}{\partial Y}\right)}_X{\left(\dfrac{\partial Q}{\partial X}\right)}_Y}{J\left(\dfrac{Q,R}{X,Y}\right)}\right]dR \end{aligned}\]

    donde los coeficientes de\(dQ\) y\(dR\) son\({\left({\partial M}/{\partial Q}\right)}_R\) y\({\left({\partial M}/{\partial R}\right)}_Q\), respectivamente. En el § 5, encontramos los otros diferenciales totales en términos de\(dP\) y\(dT\). Si establecemos\(X=T\) y\(Y=P\), podemos usar estas relaciones para encontrar el diferencial total para cualquier función de estado expresada en términos de otras dos funciones estatales cualesquiera.

    Para ilustrar este punto, utilicemos estas relaciones para encontrar el diferencial total de\(S\) expresado en función de\(P\) y\(V\),\(S=S\left(P,V\right)\). En este caso, estamos transformando de las variables\(\left(P,T\right)\) a las variables\(\left(P,V\right)\). Se trata de una transformación de una variable. Para realizarlo, hacemos las sustituciones adicionales\(M=S\),\(Q=V\), y\(R=P\). Ya que tenemos\(Y=R=P\), las ecuaciones de transformación simplifican sustancialmente. Tenemos

    \[\left(\dfrac{\partial R}{\partial Y}\right)_X=\left(\dfrac{\partial P}{\partial P}\right)_X=1\]

    \[\left(\dfrac{\partial R}{\partial X}\right)_Y=\left(\dfrac{\partial P}{\partial T}\right)_P=0\]

    \[\left(\dfrac{\partial Q}{\partial Y}\right)_X=\left(\dfrac{\partial V}{\partial P}\right)_T\]

    \[\left(\dfrac{\partial Q}{\partial X}\right)_Y=\left(\dfrac{\partial V}{\partial T}\right)_P\]

    El jacobiano se convierte

    \[J\left(\dfrac{Q,R}{X,Y}\right) = \left(\dfrac{\partial V}{\partial T}\right)_P \]

    y las derivadas parciales de\(S\) become

    \[{\left(\dfrac{\partial S}{\partial V}\right)}_P={{\left(\dfrac{\partial S}{\partial T}\right)}_P}/{{\left(\dfrac{\partial V}{\partial T}\right)}_P={\dfrac{C_P}{T}\left(\dfrac{\partial T}{\partial V}\right)}_P}\]

    y

    \[\begin{align} \left(\dfrac{\partial S}{\partial P}\right)_V &= \dfrac{-{\left(\dfrac{\partial S}{\partial T}\right)}_P{\left(\dfrac{\partial V}{\partial P}\right)}_T+{\left(\dfrac{\partial S}{\partial P}\right)}_T{\left(\dfrac{\partial V}{\partial T}\right)}_P}{{\left(\dfrac{\partial V}{\partial T}\right)}_P} \\[4pt] &={\dfrac{C_P}{T}\left(\dfrac{\partial T}{\partial P}\right)}_V+{\left(\dfrac{\partial S}{\partial P}\right)}_T \end{align}\]


    This page titled 10.6: La transformación de las variables termodinámicas en general is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.