Saltar al contenido principal
LibreTexts Español

1.12.21: Expansiones- Soluciones- Molares Parciales Isobáricos e Isórpicos

  • Page ID
    80528
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    El punto de partida es la ecuación (a).

    \[\mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{S}}+\frac{\mathrm{K}_{\mathrm{T}} \, \mathrm{C}_{\mathrm{p}}}{\mathrm{T} \, \mathrm{E}_{\mathrm{p}}}\]

    Diferenciamos esta ecuación con respecto a la cantidad de soluto\(\mathrm{n}_{j}\) fijado\(\mathrm{T}\),\(\mathrm{p}\) y la cantidad de disolvente\(\mathrm{n}_{1}\).

    \[\mathrm{E}_{\mathrm{pj}}=\mathrm{E}_{\mathrm{Sj}}+\frac{1}{\mathrm{~T}} \,\left[\frac{\mathrm{K}_{\mathrm{T}}}{\mathrm{E}_{\mathrm{p}}} \, \mathrm{C}_{\mathrm{pj}}+\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{p}}} \, \mathrm{K}_{\mathrm{Tj}}-\frac{\mathrm{K}_{\mathrm{T}} \, \mathrm{C}_{\mathrm{p}}}{\left(\mathrm{E}_{\mathrm{p}}\right)^{2}} \, \mathrm{E}_{\mathrm{pj}}\right]\]

    O,

    \[\mathrm{E}_{\mathrm{pj}}=\mathrm{E}_{\mathrm{Sj}}+\frac{1}{\mathrm{~T}} \, \frac{\mathrm{K}_{\mathrm{T}} \, \mathrm{C}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{p}}} \,\left[\frac{\mathrm{C}_{\mathrm{p} j}}{\mathrm{C}_{\mathrm{p}}}+\frac{\mathrm{K}_{\mathrm{T} \mathrm{J}}}{\mathrm{K}_{\mathrm{T}}}-\frac{\mathrm{E}_{\mathrm{p} j}}{\mathrm{E}_{\mathrm{p}}}\right]\]

    Convertimos a variables intensivas en volumen.

    \[\mathrm{E}_{\mathrm{pj}}=\mathrm{E}_{\mathrm{S} \mathrm{j}}+\frac{1}{\mathrm{~T}} \, \frac{\kappa_{\mathrm{T}} \, \mathrm{C}_{\mathrm{p}}}{\alpha_{\mathrm{p}} \, \mathrm{V}} \,\left[\frac{\mathrm{V} \, \mathrm{C}_{\mathrm{pj}}}{\mathrm{C}_{\mathrm{p}}}+\frac{\mathrm{V} \, \mathrm{K}_{\mathrm{T} j}}{\mathrm{~K}_{\mathrm{T}}}-\frac{\mathrm{V} \, \mathrm{E}_{\mathrm{p} j}}{\mathrm{E}_{\mathrm{p}}}\right]\]

    O,

    \[E_{p j}=E_{S j}+\frac{1}{T} \, \frac{K_{T} \, \sigma}{\alpha_{p}} \,\left[\frac{C_{p j}}{\sigma}+\frac{K_{T_{j}}}{K_{T}}-\frac{E_{p j}}{\alpha_{p}}\right]\]

    Pero

    \[\varepsilon=K_{\mathrm{T}} \, \sigma / \mathrm{T} \, \alpha_{\mathrm{p}}\]

    Entonces,

    \[\frac{\mathrm{E}_{\mathrm{pj}}-\mathrm{E}_{\mathrm{S} j}}{\varepsilon}=-\frac{\mathrm{E}_{\mathrm{pj}}}{\alpha_{\mathrm{p}}}+\frac{\mathrm{K}_{\mathrm{T} j}}{\kappa_{\mathrm{T}}}+\frac{\mathrm{C}_{\mathrm{pj}}}{\sigma}\]

    Por lo tanto, para una solución acuosa en el límite de dilución infinita,

    \[\frac{\mathrm{E}_{\mathrm{pj}}^{\infty}(\mathrm{aq})-\mathrm{E}_{\mathrm{sj}}^{\infty}(\mathrm{aq})}{\varepsilon_{1}^{*}(\ell)}=-\frac{\mathrm{E}_{\mathrm{pj}}^{\infty}(\mathrm{aq})}{\alpha_{\mathrm{p} 1}^{*}(\ell)}+\frac{\mathrm{K}_{\mathrm{T} j}^{\infty}(\mathrm{aq})}{\kappa_{\mathrm{T} 1}^{*}(\ell)}+\frac{\mathrm{C}_{\mathrm{pj}}^{\infty}}{\sigma_{1}^{*}(\ell)}\]

    Comenzamos con la ecuación,

    \[\mathrm{E}_{\mathrm{s}}=-\frac{\mathrm{K}_{\mathrm{s}} \, \mathrm{C}_{\mathrm{p}}}{\mathrm{T} \, \mathrm{E}_{\mathrm{p}}}\]

    Esta última ecuación se diferencia con respecto a la cantidad de soluto\(\mathrm{n}_{j}\) en una solución a cantidad fija\(\mathrm{T}\), fija\(\mathrm{p}\) y fija de disolvente,\(\mathrm{n}_{1}\).

    \ [\ comenzar {alineado}
    \ izquierda (\ frac {\ parcial E_ {S}} {\ parcial n_ {j}\ derecha) _ {T, p, n (1)} =-\ frac {C_ {p}} {T\, E_ {p}}\,\ izquierda (\ frac {\ parcial K_ {s}} {\ parcial n_ {j} derecha) _ {T, p, n (1)} -\ frac {K_ {s}} {T\, E_ {p}}\,\ izquierda (\ frac {\ parcial C_ {p}} {\ parcial n_ {j}}\ derecha) _ {T, p, n (1)}\\
    &+\ frac {K_ {s }\, C_ {p}} {T\,\ izquierda (E_ {p}\ derecha) ^ {2}}\,\ izquierda (\ frac {\ parcial E_ {p}} {\ parcial n_ {j}}\ derecha) _ {T, p, n (1)}
    \ final {alineado}\]

    O,

    \[E_{S_{j}}=-\frac{C_{p}}{T \, E_{p}} \, \frac{K_{s}}{K_{s}} \, K_{s_{j}}-\frac{K_{s}}{T \, E_{p}} \, \frac{C_{p}}{C_{p}} \, C_{p j}+\frac{K_{s} \, C_{p}}{T \,\left(E_{p}\right)^{2}} \, E_{p j}\]

    Reescribimos esta última ecuación en términos de variables intensivas en volumen.

    \[\mathrm{E}_{\mathrm{Sj}}=-\frac{1}{\mathrm{~T}} \, \frac{\sigma}{\alpha_{\mathrm{p}}} \, \frac{\kappa_{\mathrm{s}}}{\kappa_{\mathrm{s}}} \, \mathrm{K}_{\mathrm{Sj}}-\frac{1}{\mathrm{~T}} \, \frac{\kappa_{\mathrm{S}}}{\alpha_{\mathrm{p}}} \, \frac{\sigma}{\sigma} \, \mathrm{C}_{\mathrm{pj}}+\frac{\kappa_{\mathrm{s}} \, \sigma}{\mathrm{T} \,\left(\alpha_{\mathrm{p}}\right)^{2}} \, \mathrm{E}_{\mathrm{pj}}\]

    Pero

    \[\alpha_{\mathrm{s}}=-\frac{\kappa_{\mathrm{s}} \, \sigma}{\mathrm{T} \, \alpha_{\mathrm{p}}}\]

    Entonces

    \[E_{\mathrm{S}_{\mathrm{j}}}=\alpha_{\mathrm{s}} \, \frac{\mathrm{K}_{\mathrm{s} \mathrm{j}}}{\kappa_{\mathrm{s}}}+\alpha_{\mathrm{s}} \, \frac{\mathrm{C}_{\mathrm{p} j}}{\sigma}-\alpha_{\mathrm{s}} \, \frac{\mathrm{E}_{\mathrm{pj}}}{\alpha_{\mathrm{p}}}\]

    Por lo tanto (con un cambio de orden)

    \[\frac{E_{\mathrm{s} j}}{\alpha_{p}}=-\frac{E_{p j}}{\alpha_{p}}+\frac{K_{S j}}{K_{s}}+\frac{C_{p j}}{\sigma}\]


    This page titled 1.12.21: Expansiones- Soluciones- Molares Parciales Isobáricos e Isórpicos is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.