Saltar al contenido principal
LibreTexts Español

1.12.22: Expansiones y Compresiones- Soluciones- Dependencia Isentrópica del Volumen en Temperatura y Presión

  • Page ID
    80538
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    El punto de partida es la operación de cálculo para un doble diferencial.

    \[\frac{\partial^{2} U}{\partial S \, \partial V}=\frac{\partial^{2} U}{\partial V \, \partial S}\]

    Entonces,\(\left(\frac{\partial T}{\partial V}\right)_{s}=-\left(\frac{\partial p}{\partial S}\right)_{v}\) O,

    \[\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{s}}=-\left(\frac{\partial \mathrm{S}}{\partial \mathrm{p}}\right)_{\mathrm{V}}\]

    Pero,

    \[\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{s}}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{p}}\right)_{\mathrm{s}} \,\left(\frac{\partial \mathrm{S}}{\partial \mathrm{V}}\right)_{\mathrm{p}}\]

    También observamos que

    \[\left(\frac{\partial \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{p}}=\left(\frac{\partial \mathrm{S}}{\partial \mathrm{V}}\right)_{\mathrm{p}} \,\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{p}}\]

    Entonces,

    \[\left(\frac{\partial V}{\partial T}\right)_{s}=\left(\frac{\partial V}{\partial p}\right)_{s} \,\left(\frac{\partial S}{\partial T}\right)_{p} \,\left(\frac{\partial T}{\partial V}\right)_{p}\]

    Sin embargo, de la ecuación de Gibbs - Helmholtz,\(\left(\frac{\partial S}{\partial T}\right)_{p}=\frac{C_{p}}{T}\)

    Entonces\(\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{s}}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{p}}\right)_{\mathrm{s}} \,\left(\frac{\partial \mathrm{T}}{\partial \mathrm{V}}\right)_{\mathrm{p}} \, \frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{T}}\) O,

    \[\mathrm{E}_{\mathrm{s}}=-\frac{\mathrm{K}_{\mathrm{s}} \, \mathrm{C}_{\mathrm{p}}}{\mathrm{T} \, \mathrm{E}_{\mathrm{p}}}\]

    Dividimos ambos lados de la ecuación (f) por volumen\(\mathrm{V}\). De ahí

    \[\alpha_{\mathrm{s}}=-\kappa_{\mathrm{s}} \, \sigma / \mathrm{T} \, \alpha_{\mathrm{p}}\]