Saltar al contenido principal
LibreTexts Español

1.13.6: Equilibrio - Depresión del Punto de Congelación de un Solvente por un Soluto

  • Page ID
    79668
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Un sistema líquido homogéneo dado (a presión\(\mathrm{p}\)) comprende disolvente\(\mathrm{i}\) y soluto\(\mathrm{j}\) a temperatura\(\mathrm{T}\) y presión\(\mathrm{p}\). En ausencia de soluto\(\mathrm{j}\), el punto de congelación del disolvente es\(\mathrm{T}_{1}^{0}\). Pero en presencia de soluto\(\mathrm{j}\) el punto de congelación es la temperatura\(\mathrm{T}\) donde\(\mathrm{T} < \mathrm{T}_{1}^{0}\). La depresión del punto de congelación\(\theta\left[=\mathrm{T}_{1}^{0}-\mathrm{T}\right]\) se registra para una solución donde se encuentra la fracción molar del disolvente\(\mathrm{x}_{1}(\mathrm{sln})\). Si la solución se diluye, podemos suponer que las propiedades termodinámicas de la solución son ideales. De la ecuación de Schroeder-van Laar,

    \[-\ln \left[x_{1}(s \ln )\right]=\frac{\left[\Delta_{f} H_{1}^{0}(T)\right]}{R} \,\left[\frac{1}{T}-\frac{1}{T_{1}^{0}}\right]\]

    \[-\ln \left[\mathrm{x}_{1}(\mathrm{~s} \ln )\right]=\frac{\Delta_{\mathrm{f}} \mathrm{H}_{1}^{0}}{\mathrm{R}} \, \frac{\theta}{\left(\mathrm{T}_{1}^{0}-\theta\right) \, \mathrm{T}_{1}^{0}}\]

    Si

    \[\mathrm{T}_{1}^{0}-\theta \cong \mathrm{T}_{1}^{0},-\ln \left[\mathrm{x}_{1}(\mathrm{~s} \ln )\right]=\frac{\Delta_{\mathrm{f}} \mathrm{H}_{1}^{0}}{\mathrm{R}} \, \frac{\theta}{\left(\mathrm{T}_{1}^{0}\right)^{2}}\]

    O,

    \[\ln \left[\frac{1}{x_{1}(s \ln )}\right]=\frac{\Delta_{\mathrm{f}} H_{1}^{0}}{R} \, \frac{\theta}{\left(T_{1}^{0}\right)^{2}}\]

    Por lo tanto [2]

    \[\theta=\left[\frac{\mathrm{R} \,\left(\mathrm{T}_{1}^{0}\right)^{2} \, \mathrm{M}_{1}}{\Delta_{\mathrm{f}} \mathrm{H}_{1}^{0}}\right] \, \mathrm{m}_{\mathrm{j}}\]

    La cantidad encerrada en los [...] corchetes es característica del disolvente.

    Notas al pie

    [1]\(\theta=\mathrm{T}_{1}^{0}-\mathrm{T}\);\(\frac{1}{\mathrm{~T}}-\frac{1}{\mathrm{~T}_{1}^{0}}=\frac{\mathrm{T}_{1}^{0}-\mathrm{T}}{\mathrm{T} \, \mathrm{T}_{1}^{0}}=\frac{\mathrm{T}_{1}^{0}-\mathrm{T}}{\left(\mathrm{T}_{1}^{0}-\theta\right) \, \mathrm{T}_{1}^{0}}=\frac{\theta}{\left(\mathrm{T}_{1}^{0}-\theta\right) \, \mathrm{T}_{1}^{0}}\)

    [2]\(\frac{1}{x_{1}}=\frac{1}{1-x_{j}}=\frac{1}{1-\left[n_{j} /\left(n_{1}+n_{j}\right)\right]}=\frac{n_{1}+n_{j}}{n_{1}+n_{j}-n_{j}}\) Para una solución donde la molalidad del soluto\(j=m_{j}\)\(\mathrm{m}_{\mathrm{j}}=\frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1} \, \mathrm{M}_{1}}\)
    Entonces,\(\frac{1}{\mathrm{x}_{1}}=\frac{\mathrm{n}_{1}+\mathrm{n}_{1} \, \mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}}{\mathrm{n}_{1}}\)
    \(-\ln \left[\mathrm{x}_{1}(\mathrm{~s} \ln )\right]=-\ln \left[1+\mathrm{M}_{1} \, \mathrm{m}_{\mathrm{j}}\right]\);
    \(-\ln \left[x_{1}(\operatorname{sln})\right]=-\ln \left[1-x_{j}(s \ln )\right] \approx x_{j}\)
    \(x_{j}=\frac{m_{j}}{\left(1 / M_{1}\right)+m_{j}} \approx m_{j} \, M_{1}\)

    [3] ver I Prigogine y R Defay, Termodinámica Química, trans. D. H. Everett, Longmans Green, Londres, 1953.