Saltar al contenido principal

# 5.4E: Ejercicios

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## La práctica hace a la perfección

Multiplicar monomios

En los siguientes ejercicios, multiplique los monomios.

1. ⓐ $$(6y^7)(−3y^4)$$$$(\frac{4}{7}rs^2)(\frac{1}{4}rs^3)$$

2. ⓐ $$(−10x^5)(−3x^3)$$$$(58x^3y)(24x^5y)$$

Contestar

$$30x^8$$$$15x^8y^2$$

3. ⓐ $$(−8u^6)(−9u)$$$$(\frac{2}{3}x^2y)(\frac{3}{4}xy^2)$$

4. ⓐ $$(−6c^4)(−12c)$$$$(\frac{3}{5}m^3n^2)(\frac{5}{9}m^2n^3)$$

Contestar

$$72c^5$$$$\frac{1}{3}m^5n^5$$

Multiplica un polinomio por un monomio

En los siguientes ejercicios, multiplica.

5. ⓐ$$−8x(x^2+2x−15)$$$$5pq^3(p^2−2pq+6q^2)$$

6. ⓐ $$−5t(t^2+3t−18)$$$$9r^3s(r^2−3rs+5s^2)$$

Contestar

$$−5t^3−15t^2+90t$$
$$9sr^5−27s^2r^4+45s^3r^3$$

7. ⓐ $$−8y(y^2+2y−15)$$$$−4y^2z^2(3y^2+12yz−z^2)$$

8. ⓐ $$−5m(m^2+3m−18)$$$$−3x^2y^2(7x^2+10xy−y^2)$$

Contestar

$$−5m^3−15m^2+90m$$
$$−21x^4y^2−30x^3y^3+3x^2y^4$$

Multiplicar un Binomial por un Binomial

En los siguientes ejercicios, multiplique los binomios utilizando ⓐ la Propiedad Distributiva; ⓑ el método Foil; ⓒ el Método Vertical.

9. $$(w+5)(w+7)$$

10. $$(y+9)(y+3)$$

Contestar

$$y^2+12y+27$$

11. $$(4p+11)(5p−4)$$

12. $$(7q+4)(3q−8)$$

Contestar

$$21q^2−44q−32$$

En los siguientes ejercicios, multiplique los binomios. Utilice cualquier método.

13. $$(x+8)(x+3)$$

14. $$(y−6)(y−2)$$

Contestar

$$y^2−8y+12$$

15. $$(2t−9)(10t+1)$$

16. $$(6p+5)(p+1)$$

Contestar

$$6p^2+11p+5$$

17. $$(q−5)(q+8)$$

18. $$(m+11)(m−4)$$

Contestar

$$m^2+7m−44$$

19. $$(7m+1)(m−3)$$

20. $$(3r−8)(11r+1)$$

Contestar

$$33r^2−85r−8$$

21. $$(x^2+3)(x+2)$$

22. $$(y^2−4)(y+3)$$

Contestar

$$y^3+3y^2−4y−12$$

23. $$(5ab−1)(2ab+3)$$

24. $$(2xy+3)(3xy+2)$$

Contestar

$$6x^2y^2+13xy+6$$

25. $$(x^2+8)(x^2−5)$$

26. $$(y^2−7)(y^2−4)$$

Contestar

$$y^4−11y^2+28$$

27. $$(6pq−3)(4pq−5)$$

28. $$(3rs−7)(3rs−4)$$

Contestar

$$9r^2s^2−33rs+28$$

Multiplicar un polinomio por un polinomio

En los siguientes ejercicios, multiplique usando ⓐ la Propiedad Distributiva; ⓑ el Método Vertical.

29. $$(x+5)(x^2+4x+3)$$

30. $$(u+4)(u^2+3u+2)$$

Contestar

$$u^3+7u^2+14u+8$$

31. $$(y+8)(4y^2+y−7)$$

32. $$(a+10)(3a^2+a−5)$$

Contestar

$$3a^3+31a^2+5a−50$$

33. $$(y^2−3y+8)(4y^2+y−7)$$

34. $$(2a^2−5a+10)(3a^2+a−5)$$

Contestar

$$6a^4−13a^3+15a^2+35a−50$$

Multiplicar productos especiales

En los siguientes ejercicios, multiplica. Usa cualquiera de los dos métodos.

35. $$(w−7)(w^2−9w+10)$$

36. $$(p−4)(p^2−6p+9)$$

Contestar

$$p^3−10p^2+33p−36$$

37. $$(3q+1)(q^2−4q−5)$$

38. $$(6r+1)(r^2−7r−9)$$

Contestar

$$6r^3−41r^2−61r−9$$

39. $$(w+4)^2$$

40. $$(q+12)^2$$

Contestar

$$q^2+24q+144$$

41. $$(3x−y)^2$$

42. $$(2y−3z)^2$$

Contestar

$$4y^2−12yz+9z^2$$

43. $$(y+\frac{1}{4})^2$$

44. $$(x+\frac{2}{3})^2$$

Contestar

$$x^2+\frac{4}{3}x+\frac{4}{9}$$

45. $$(\frac{1}{5}x−\frac{1}{7}y)^2$$

46. $$(\frac{1}{8}x−\frac{1}{9}y)^2$$

Contestar

$$\frac{1}{64}x^2−\frac{1}{36}xy+\frac{1}{81}y^2$$

47. $$(3x^2+2)^2$$

48. $$(5u^2+9)^2$$

Contestar

$$25u^4+90u^2+81$$

49. $$(4y3−2)2$$

50. $$(8p3−3)2$$

Contestar

$$64p^6−48p^3+9$$

51. $$(5k+6)(5k−6)$$

52. $$(8j+4)(8j−4)$$

Contestar

$$64j^2−16$$

53. $$(11k+4)(11k−4)$$

54. $$(9c+5)(9c−5)$$

Contestar

$$81c^2−25$$

55. $$(9c−2d)(9c+2d)$$

56. $$(7w+10x)(7w−10x)$$

Contestar

$$49w^2−100x^2$$

57. $$(m+\frac{2}{3}n)(m−\frac{2}{3}n)$$

58. $$(p+\frac{4}{5}q)(p−\frac{4}{5}q)$$

Contestar

$$p^2−\frac{16}{25}q^2$$

59. $$(ab−4)(ab+4)$$

60. $$(xy−9)(xy+9)$$

Contestar

$$x^2y^2−81$$

61. $$(12p^3−11q^2)(12p^3+11q^2)$$

62. $$(15m^2−8n^4)(15m^2+8n^4)$$

Contestar

$$225m^4−64n^8$$

En los siguientes ejercicios, encuentra cada producto.

63. $$(p−3)(p+3)$$

64. $$(t−9)^2$$

Contestar

$$t^2−18t+81$$

65. $$(m+n)^2$$

66. $$(2x+y)(x−2y)$$

Contestar

$$2x^2−3xy−2y^2$$

67. $$(2r+12)^2$$

68. $$(3p+8)(3p−8)$$

Contestar

$$9p^2−64$$

69. $$(7a+b)(a−7b)$$

70. $$(k−6)^2$$

Contestar

$$k^2−12k+36$$

71. $$(a^5−7b)^2$$

72. $$(x^2+8y)(8x−y^2)$$

Contestar

$$8x^3−x^2y^2+64xy−8y^3$$

73. $$(r^6+s^6)(r^6−s^6)$$

74. $$(y^4+2z)^2$$

Contestar

$$y^8+4y^4z+4z^2$$

75. $$(x^5+y^5)(x^5−y^5)$$

76. $$(m^3−8n)^2$$

Contestar

$$m^6−16m^3n+64n^2$$

77. $$(9p+8q)^2$$

78. $$(r^2−s^3)(r^3+s^2)$$

Contestar

$$r^5+r^2s^2−r^3s^3−s^5$$

Práctica Mixta

79. $$(10y−6)+(4y−7)$$

80. $$(15p−4)+(3p−5)$$

Contestar

$$18p−9$$

81. $$(x^2−4x−34)−(x^2+7x−6)$$

82. $$(j^2−8j−27)−(j^2+2j−12)$$

Contestar

$$−10j−15$$

83. $$(\frac{1}{5}f^8)(20f^3)$$

84. $$(\frac{1}{4}d^5)(36d^2)$$

Contestar

$$9d^7$$

85. $$(4a^3b)(9a^2b^6)$$

86. $$(6m^4n^3)(7mn^5)$$

Contestar

$$72m^5n^8$$

87. $$−5m(m^2+3m−18)$$

88. $$5q^3(q^2−2q+6)$$

Contestar

$$5q^5−10q^4+30q^3$$

89. $$(s−7)(s+9)$$

90. $$(y^2−2y)(y+1)$$

Contestar

$$y^3−y^2−2y$$

91. $$(5x−y)(x−4)$$

92. $$(6k−1)(k^2+2k−4)$$

Contestar

$$6k^3−11k^2−26k+4$$

93. $$(3x−11y)(3x−11y)$$

94. $$(11−b)(11+b)$$

Contestar

$$121−b^2$$

95. $$(rs−\frac{2}{7})(rs+\frac{2}{7})$$

96. $$(2x^2−3y^4)(2x^2+3y^4)$$

Contestar

$$4x^4−9y^8$$

97. $$(m−15)^2$$

98. $$(3d+1)^2$$

Contestar

$$9d^2+6d+1$$

99. $$(4a+10)^2$$

100. $$(3z+15)^2$$

Contestar

$$9z^2−\frac{6}{5}z+\frac{1}{25}$$

Multiplicar funciones polinómicas

101. Para funciones $$f(x)=x+2$$ y $$g(x)=3x^2−2x+4$$, encuentra ⓐ $$(f·g)(x)$$$$(f·g)(−1)$$

102. Para funciones $$f(x)=x−1$$ y $$g(x)=4x^2+3x−5$$, encuentra ⓐ $$(f·g)(x)$$$$(f·g)(−2)$$

Contestar

$$(f·g)(x)=4x^3−x^2−8x+5$$
$$(f·g)(−2)=−15$$

103. Para funciones $$f(x)=2x−7$$ y $$g(x)=2x+7$$, encuentra ⓐ $$(f·g)(x)$$$$(f·g)(−3)$$

104. Para funciones $$f(x)=7x−8$$ y $$g(x)=7x+8$$, encuentra ⓐ $$(f·g)(x)$$$$(f·g)(−2)$$

Contestar

$$(f·g)(x)=49x^2−64$$
$$(f·g)(−2)=187$$

105. Para funciones $$f(x)=x^2−5x+2$$ y $$g(x)=x^2−3x−1$$, encuentra ⓐ $$(f·g)(x)$$$$(f·g)(−1)$$

106. Para funciones $$f(x)=x^2+4x−3$$ y $$g(x)=x^2+2x+4$$, encuentra ⓐ $$(f·g)(x)$$$$(f·g)(1)$$

Contestar

$$(f·g)(x)=x^4+6x^3+9x^2+10x−12$$$$(f·g)(1)=14$$

## Ejercicios de escritura

107. ¿Qué método prefiere utilizar al multiplicar dos binomios: la Propiedad Distributiva o el método Foil? ¿Por qué? ¿Qué método prefiere utilizar al multiplicar un polinomio por un polinomio: la Propiedad Distributiva o el Método Vertical? ¿Por qué?

108. Multiplica lo siguiente:

$$(x+2)(x−2)$$

$$(y+7)(y−7)$$

$$(w+5)(w−5)$$

Explica el patrón que ves en tus respuestas.

Contestar

Las respuestas variarán.

109. Multiplica lo siguiente:

$$(p+3)(p+3)$$

$$(q+6)(q+6)$$

$$(r+1)(r+1)$$

Explica el patrón que ves en tus respuestas.

110. ¿Por qué $$(a+b)^2$$ resulta en un trinomio, pero $$(a−b)(a+b)$$ resulta en un binomio?

Contestar

Las respuestas variarán.

## Autocomprobación

ⓐ Después de completar los ejercicios, usa esta lista de verificación para evaluar tu dominio de los objetivos de esta sección.

ⓑ ¿Qué te dice esta lista de verificación sobre tu dominio de esta sección? ¿Qué pasos tomarás para mejorar?

This page titled 5.4E: Ejercicios is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.