Saltar al contenido principal
LibreTexts Español

9.9E: Ejercicios

  • Page ID
    51768
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    La práctica hace a la perfección

    Ejercicio \(\PageIndex{11}\) Resolver desigualdades cuadráticas gráficamente

    En los siguientes ejercicios,

    1. Resolver gráficamente
    2. Escribe la solución en notación de intervalos
      1. \(x^{2}+6 x+5>0\)
      2. \(x^{2}+4 x-12<0\)
      3. \(x^{2}+4 x+3 \leq 0\)
      4. \(x^{2}-6 x+8 \geq 0\)
      5. \(-x^{2}-3 x+18 \leq 0\)
      6. \(-x^{2}+2 x+24<0\)
      7. \(-x^{2}+x+12 \geq 0\)
      8. \(-x^{2}+2 x+15>0\)
    Contestar

    1.


    1. La gráfica que se muestra es una parábola orientada hacia arriba con vértice (negativo 3, negativo 4) e intercepción y (0,5).
      Figura 9.8.16
    2. \((-\infty,-5) \cup(-1, \infty)\)

    3.



    1. Figura 9.8.17
    2. \([-3,-1]\)

    5.


    1. La gráfica que se muestra es una parábola orientada hacia abajo con vértice (menos 1 y 5 décimas, 20) e intercepción y (0, 18).
      Figura 9.8.18
    2. \((-\infty,-6] \cup[3, \infty)\)

    7.


    1. La gráfica que se muestra es una parábola orientada hacia abajo con una intercepción y de (0, 12) y x (negativo 3, 0) y (4, 0).
      Figura 9.8.19
    2. \([-3,4]\)
    Ejercicio \(\PageIndex{12}\) Resolver desigualdades cuadráticas gráficamente

    En los siguientes ejercicios, resuelve cada desigualdad algebraicamente y escribe cualquier solución en notación de intervalos.

    1. \(x^{2}+3 x-4 \geq 0\)
    2. \(x^{2}+x-6 \leq 0\)
    3. \(x^{2}-7 x+10<0\)
    4. \(x^{2}-4 x+3>0\)
    5. \(x^{2}+8 x>-15\)
    6. \(x^{2}+8 x<-12\)
    7. \(x^{2}-4 x+2 \leq 0\)
    8. \(-x^{2}+8 x-11<0\)
    9. \(x^{2}-10 x>-19\)
    10. \(x^{2}+6 x<-3\)
    11. \(-6 x^{2}+19 x-10 \geq 0\)
    12. \(-3 x^{2}-4 x+4 \leq 0\)
    13. \(-2 x^{2}+7 x+4 \geq 0\)
    14. \(2 x^{2}+5 x-12>0\)
    15. \(x^{2}+3 x+5>0\)
    16. \(x^{2}-3 x+6 \leq 0\)
    17. \(-x^{2}+x-7>0\)
    18. \(-x^{2}-4 x-5<0\)
    19. \(-2 x^{2}+8 x-10<0\)
    20. \(-x^{2}+2 x-7 \geq 0\)
    Contestar

    1. \((-\infty,-4] \cup[1, \infty)\)

    3. \((2,5)\)

    5. \((-\infty,-5) \cup(-3, \infty)\)

    7. \([2-\sqrt{2}, 2+\sqrt{2}]\)

    9. \((-\infty, 5-\sqrt{6}) \cup(5+\sqrt{6}, \infty)\)

    11. \(\left(-\infty,-\frac{5}{2}\right] \cup\left[-\frac{2}{3}, \infty\right)\)

    13. \(\left[-\frac{1}{2}, 4\right]\)

    15. \((-\infty, \infty)\)

    17. sin solución

    19. \((-\infty, \infty)\)

    Ejercicios de \(\PageIndex{13}\) escritura de ejercicios
    1. Explicar los puntos críticos y cómo se utilizan para resolver las desigualdades cuadráticas algebraicamente.
    2. Resuelva \(x^{2}+2x≥8\) tanto gráficamente como algebraicamente. ¿Qué método prefieres y por qué?
    3. Describir gráficamente los pasos necesarios para resolver una desigualdad cuadrática.
    4. Describir los pasos necesarios para resolver una desigualdad cuadrática algebraicamente.
    Contestar

    1. Las respuestas pueden variar.

    3. Las respuestas pueden variar.

    Autocomprobación

    a. Después de completar los ejercicios, utilice esta lista de verificación para evaluar su dominio de los objetivos de esta sección.

    Esta figura es una lista para evaluar su comprensión de los conceptos presentados en esta sección. Tiene 4 columnas etiquetadas I can…, Con confianza, Con un poco de ayuda, y No-I don’ t conseguirlo! Debajo de I can…, hay resolver desigualdades cuadráticas gráficamente y resolver desigualdades cuadráticas algebraicamente. Las otras columnas se dejan en blanco para que compruebes tu comprensión.
    Figura 9.8.20

    b. En una escala de 1-10, ¿cómo calificaría su dominio de esta sección a la luz de sus respuestas en la lista de verificación? ¿Cómo se puede mejorar esto?


    This page titled 9.9E: Ejercicios is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.