Saltar al contenido principal
LibreTexts Español

8.4: Uso de MCMC bayesiano para estimar parámetros del modelo Mk

  • Page ID
    54295
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    También podemos analizar este modelo utilizando un marco Bayesiano MCMC. Podemos modificar el enfoque estándar del MCMC bayesiano (ver capítulo 2):

    1. Muestree un valor de parámetro inicial, q, de sus distribuciones anteriores. Para este ejemplo, podemos establecer nuestra distribución previa como uniforme entre 0 y 1. (Tenga en cuenta que también se podrían tratar las probabilidades de los estados en la raíz como un parámetro a estimar a partir de los datos; en este caso asignaremos probabilidades iguales a cada estado).

    2. Dado el valor del parámetro actual, seleccione nuevos valores de parámetros propuestos utilizando la densidad propuesta Q (q ′| q). Por ejemplo, podríamos usar una densidad de propuesta uniforme con ancho 0.2, de modo que Q (q ′| q) U (q − 0.1, q + 0.1).

    3. Calcula tres proporciones:

      • a. El ratio de probabilidades anterior, R p r i o r. En este caso, dado que nuestro previo es uniforme, R p r i o r = 1.

      • b. la relación de densidad propuesta, R p r o p o s a l. En este caso nuestra densidad propuesta es simétrica, por lo que R p r o p o s a l = 1.

      • c. La razón de verosimilitud, R l i k e l i h o o d. Podemos calcular las probabilidades usando el algoritmo de poda de Felsenstein (Cuadro 8.1); luego calcular este valor con base en la ecuación 2.26.

    4. Encuentre R a c c e p t como el producto de las probabilidades previas, la relación de densidad propuesta y la razón de verosimilitud. En este caso, tanto las probabilidades previas como las relaciones de densidad propuesta son 1, por lo que R a c c e p t = R l i k e l i h o d

    5. Dibuja un número aleatorio u de una distribución uniforme entre 0 y 1. Si u < R a c c e p t, acepte el valor propuesto de ambos parámetros; de lo contrario rechace, y conserve el valor actual de los dos parámetros.

    6. Repita los pasos 2-5 una gran cantidad de veces.

    Podemos ejecutar este análisis sobre nuestros datos escuamados, obteniendo una posterior con una estimación media de q = 0.001980785 y un intervalo creíble de 95% de 0.001174813 − 0.003012715.


    This page titled 8.4: Uso de MCMC bayesiano para estimar parámetros del modelo Mk is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Luke J. Harmon via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.