Saltar al contenido principal
LibreTexts Español

14.5: Colisión Totalmente Elástica - Dispersión Compton

  • Page ID
    129509
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Como ejemplo final de colisión en relatividad especial, consideramos el caso totalmente elástico: una colisión en la que se conserva el impulso total, la energía cinética total y la masa de todas las partículas. Un ejemplo de tal colisión es la dispersión de Compton: la colisión entre un fotón y un electrón, que resulta en una transferencia de energía de uno a otro, visible en un cambio de longitud de onda del fotón. Para nuestro ejemplo, tomaremos el electrón como inicialmente estacionario, y el fotón que viene a lo largo del\(x\) eje -eje; después de la colisión, ambas partículas tienen velocidades distintas de cero en ambas\(y\) direcciones\(x\) y (ver Figura 14.4.1).

    Dispersión de Compton entre un fotón y un electrón
    Figura\(\PageIndex{1}\): Dispersión de Compton entre un fotón y un electrón, dando como resultado una transferencia de energía del fotón al electrón, medible como un cambio en la longitud de onda del fotón.

    Los cuatro momentos del electrón y el fotón antes y después de la colisión están dados por:

    \[\overline{\boldsymbol{p}}_{\mathrm{e}, \mathrm{i}}=\left( \begin{array}{c}{m_{\mathrm{e}} c} \\ {0} \\ {0} \\ {0}\end{array}\right), \quad \overline{\boldsymbol{p}}_{\gamma, \mathrm{i}}=\frac{E_{\mathrm{i}}}{c} \left( \begin{array}{c}{1} \\ {1} \\ {0} \\ {0}\end{array}\right), \quad \overline{\boldsymbol{p}}_{\mathrm{e},\mathrm{f}}=\left( \begin{array}{c}{E_{\mathrm{e},\mathrm{f}} / c} \\ {p_{\mathrm{e}, \mathrm{f}} \cos \phi} \\ {p_{\mathrm{e}, \mathrm{f}} \sin \phi} \\ {0}\end{array}\right), \quad \overline{\boldsymbol{p}}_{\gamma, \mathrm{f}}=\frac{E_{\mathrm{f}}}{c} \left( \begin{array}{c}{1} \\ {\cos \theta} \\ {-\sin \theta} \\ {0}\end{array}\right) \label{14.4.1}\]

    Ahora podemos resolver por la energía\(E_{\mathrm{f}}\) del fotón saliente (y por lo tanto su longitud de onda) en términos de la del fotón entrante (\(E_{\mathrm{i}}\)) y el ángulo de dispersión\(\theta\). De nuevo hay (al menos) dos formas de hacer esto. Una es comparar los componentes del término inicial y final energía-impulso de cuatro vectores por término. La otra es volver a utilizar el hecho de que conocemos la longitud de los cuatro vectores para eliminar inmediatamente el ángulo\(\phi\) de dispersión del electrón. Para ello, primero reescribimos la ecuación de conservación de energía-impulso,\(\overline{\boldsymbol{p}}_{\mathrm{e}, \mathrm{i}}+\overline{\boldsymbol{p}}_{\gamma, \mathrm{i}}= \overline{\boldsymbol{p}}_{\mathrm{e}, \mathrm{f}}+\overline{\boldsymbol{p}}_{\gamma, \mathrm{f}}\) para aislar el término del electrón saliente, y luego tomar el cuadrado, para obtener:

    \[\left(\overline{\boldsymbol{p}}_{\mathrm{e}, \mathrm{i}}+\overline{\boldsymbol{p}}_{\gamma, \mathrm{i}}-\overline{\boldsymbol{p}}_{\gamma, \mathrm{f}}\right)^{2}=\overline{\boldsymbol{p}}_{\mathrm{e}, \mathrm{f}}^{2} \label{14.4.2}\]

    \[\overline{\boldsymbol{p}}_{\mathrm{e}, \mathrm{i}}^{2}+\overline{\boldsymbol{p}}_{\gamma, \mathrm{i}}^{2}+\overline{\boldsymbol{p}}_{\gamma, \mathrm{f}}^{2}+\overline{\boldsymbol{p}}_{\mathrm{e}, \mathrm{i}} \cdot \overline{\boldsymbol{p}}_{\gamma, \mathrm{i}}^{2}-2 \overline{\boldsymbol{p}}_{\mathrm{e}, \mathrm{i}} \cdot \overline{\boldsymbol{p}}_{\gamma, \mathrm{f}}-2 \overline{\boldsymbol{p}}_{\gamma, \mathrm{i}} \cdot \overline{\boldsymbol{p}}_{\gamma, \mathrm{f}}=\overline{\boldsymbol{p}}_{\mathrm{ef}}^{2}\label{14.4.3}\]

    \[m_{e}^{2} c^{2}+0+0+2 m_{\mathrm{e}} E_{\mathrm{i}}-2 m_{\mathrm{e}} E_{\mathrm{f}}-2 \frac{E_{\mathrm{i}} E_{\mathrm{f}}}{c^{2}}(1-\cos \theta)=m_{e}^{2} c^{2}\label{14.4.4}\]

    a partir de lo cual podemos resolver para\(E_{\mathrm{f}}\). Reescribiendo a longitudes de onda (a través de\(E=h f=h c / \lambda\)), obtenemos

    \[\lambda_{\mathrm{f}}=\lambda_{\mathrm{i}}+\frac{h}{m_{\mathrm{e}} c}(1-\cos \theta)\label{14.4.5}\]


    This page titled 14.5: Colisión Totalmente Elástica - Dispersión Compton is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.