Saltar al contenido principal
LibreTexts Español

7.8: Teorema de la energía generalizada

  • Page ID
    126280
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    La función Hamilton,\((7.7.6)\) más la ecuación\((7.7.4)\) conducen al teorema de la energía generalizada

    \[\frac{dH\left( \mathbf{q,p,}t\right) }{dt}=\frac{dh(\mathbf{q},\mathbf{\dot{q }},t)}{dt}=\sum_{j}\dot{q}_{j}\left[ Q_{j}^{EXC}+\sum_{k=1}^{m}\lambda _{k} \frac{\partial g_{k}}{\partial q_{j}}(\mathbf{q},t)\right] -\frac{\partial L( \mathbf{q},\mathbf{\dot{q}},t)}{\partial t}\]

    Tenga en cuenta que para el caso especial donde todas las fuerzas externas\(\left[ Q_{j}^{EXC}+\sum_{k=1}^{m}\lambda _{k}\frac{\partial g_{k}}{\partial q_{j}}( \mathbf{q},t)\right] =0\), entonces

    \[\frac{dH}{dt}=-\frac{\partial L}{\partial t}\]

    Así, el hamiltoniano es independiente del tiempo si ambos \(\left[ Q_{j}^{EXC}+\sum_{k=1}^{m}\lambda _{k}\frac{\partial g_{k}}{\partial q_{j}}( \mathbf{q},t)\right] =0\)y los lagrangianos son independientes del tiempo. Para un sistema cerrado aislado que no tiene fuerzas externas que actúen, entonces el lagrangiano es independiente del tiempo porque las velocidades son constantes, y no hay energía potencial externa. Es decir, el lagrangiano es independiente del tiempo, y

    \[\frac{d}{dt}\left[ \sum_{j}\left( \dot{q}_{j}\frac{\partial L}{\partial \dot{ q}_{j}}\right) -L\right] =\frac{dH}{dt}=-\frac{\partial L}{\partial t}=0\]

    Como consecuencia, la energía hamiltoniana\(H\left( \mathbf{q,p,}t\right) ,\) y generalizada\(h(\mathbf{q},\mathbf{\dot{q}},t)\), ambas son constantes de movimiento si la lagrangiana es una constante de movimiento, y si las fuerzas externas no potenciales son cero. Este es un ejemplo del teorema de Noether, donde la simetría de la independencia del tiempo conduce a la conservación de la variable conjugada, que es la energía hamiltoniana o generalizada.


    This page titled 7.8: Teorema de la energía generalizada is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.