Saltar al contenido principal
LibreTexts Español

9.3: Ejercicios

  • Page ID
    116020
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Dejar\(F\) ser el grupo de todas las funciones desde\([0,1]\) hasta\(\mathbb{R}\text{,}\) debajo de la adición puntual. Let

    \ begin {ecuación*} N=\ {f\ in F: f (1/4) =0\}. \ end {ecuación*}

    Demostrar que\(F/N\) es un grupo que es isomórfico\(\mathbb{R}\text{.}\)

    2. Let\(N=\{1,-1\}\subseteq \mathbb{R}^*\text{.}\) Prove that \(\mathbb{R}^*/N\) is a group that's isomorphic to \(\mathbb{R}^+\text{.}\)

    3. Let\(n\in \mathbb{Z}^+\) and let\(H=\{A\in GL(n,\mathbb{R})\,:\, \det A =\pm 1\}\text{.}\) Identificar un grupo familiar para nosotros que es isomórfico para\(GL(n,\mathbb{R})/H\text{.}\)

    4. Dejar\(G\) y\(G'\) ser grupos con respectivos subgrupos normales\(N\) y\(N'\text{.}\) Demostrar o desacreditar: Si\(G/N\simeq G'/N'\) entonces\(G\simeq G'\text{.}\)


    This page titled 9.3: Ejercicios is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jessica K. Sklar via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.