Saltar al contenido principal
LibreTexts Español

1.1.1: Ejercicios 1.1

  • Page ID
    116452
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    En Ejercicios\(\PageIndex{1}\) -\(\PageIndex{10}\), indique si la ecuación dada es lineal o no.

    Ejercicio\(\PageIndex{1}\)

    \(x+y+z = 10\)

    Contestar

    Lineal

    Ejercicio\(\PageIndex{2}\)

    \(xy + yz+ xz = 1\)

    Contestar

    No lineal

    Ejercicio\(\PageIndex{3}\)

    \(-3x + 9 = 3y - 5z+ x-7\)

    Contestar

    Lineal

    Ejercicio\(\PageIndex{4}\)

    \(\sqrt{5}y + \pi x =-1\)

    Contestar

    Lineal

    Ejercicio\(\PageIndex{5}\)

    \((x-1)(x+1) = 0\)

    Contestar

    No lineal

    Ejercicio\(\PageIndex{6}\)

    \(\sqrt{x_1^2+x_2^2} = 25\)

    Contestar

    No lineal

    Ejercicio\(\PageIndex{7}\)

    \(x_1 + y + t = 1\)

    Contestar

    Lineal

    Ejercicio\(\PageIndex{8}\)

    \(\frac{1}{x} + 9 = 3\cos(y) - 5z\)

    Contestar

    No lineal

    Ejercicio\(\PageIndex{9}\)

    \(\cos(15)y + \frac{x}{4} =-1\)

    Contestar

    Lineal

    Ejercicio\(\PageIndex{10}\)

    \(2^x + 2^y = 16\)

    Contestar

    No lineal

    En Ejercicios\(\PageIndex{11}\) -\(\PageIndex{14}\), resolver el sistema de ecuaciones lineales.

    Ejercicio\(\PageIndex{11}\)

    \(\begin{array}{ccccc} x&+&y&=&-1\\ 2x&-&3y&=&8\\ \end{array}\)

    Contestar

    \(x = 1, y=-2\)

    Ejercicio\(\PageIndex{12}\)

    \(\begin{array}{ccccc} 2x&-&3y&=&3\\ 3x&+&6y&=&8\\ \end{array}\)

    Contestar

    \(x = 2, y=\frac13\)

    Ejercicio\(\PageIndex{13}\)

    \(\begin{array}{ccccccc} x&-&y&+&z&=&1\\ 2x&+&6y&-&z&=&-4\\ 4x&-&5y&+&2z&=&0\\ \end{array}\)

    Contestar

    \(x = -1, y=0,z=2\)

    Ejercicio\(\PageIndex{14}\)

    \(\begin{array}{ccccccc} x&+&y&-&z&=&1\\ 2x&+&y&&&=&2\\ &&y&+&2z&=&0\\ \end{array}\)

    Contestar

    \(x =1,\ y=0,\ z=0\)

    Ejercicio\(\PageIndex{15}\)

    Un granjero mira por su ventana a sus gallinas y cerdos. Le dice a su hija que ve 62 cabezas y 190 piernas. ¿Cuántos pollos y cerdos tiene el granjero?

    Contestar

    29 pollos y 33 cerdos

    Ejercicio\(\PageIndex{16}\)

    Una señora compra 20 baratijas en una venta de patio. El costo de cada baratija es de $0.30 o $0.65. Si gasta 8.80 dólares, ¿cuántos de cada tipo de baratija compra?

    Contestar

    12 $0.30 baratijas, 8 $0.65 baratijas


    1.1.1: Ejercicios 1.1 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.