Saltar al contenido principal
LibreTexts Español

8.E: Ejercicios

  • Page ID
    114619
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Ejercicio\(\PageIndex{1}\)

    A continuación, se dan las coordenadas polares\((r,θ)\) para un punto en el plano. Encuentra las coordenadas cartesianas correspondientes.

    1. \((2,\pi /4)\)
    2. \((-2, \pi/4)\)
    3. \((3, \pi/3)\)
    4. \((-3, \pi/3)\)
    5. \((2,5\pi /6)\)
    6. \((-2, 11\pi /6)\)
    7. \((2,\pi /2)\)
    8. \((1,3\pi /2)\)
    9. \((-3, 3\pi /4)\)
    10. \((3, 5\pi /4)\)
    11. \((-2, \pi /6)\)

    Ejercicio\(\PageIndex{2}\)

    Considera las siguientes coordenadas cartesianas\((x, y)\). Encuentra las coordenadas polares correspondientes a estos puntos.

    1. \((-1,1)\)
    2. \((\sqrt{3},-1)\)
    3. \((0,2)\)
    4. \((-5,0)\)
    5. \((-2\sqrt{3},2)\)
    6. \((2,-2)\)
    7. \((-1,\sqrt{3})\)
    8. \((-1,-\sqrt{3})\)

    Ejercicio\(\PageIndex{3}\)

    Las siguientes relaciones están escritas en términos de coordenadas cartesianas\((x, y)\). Reescribirlos en términos de coordenadas polares,\((r,\theta )\).

    1. \(y=x^2\)
    2. \(y=2x+6\)
    3. \(x^2+y^2=4\)
    4. \(x^2-y^2=1\)

    Ejercicio\(\PageIndex{4}\)

    Utilice una calculadora o sistema de álgebra computacional para graficar las siguientes relaciones polares.

    1. \(r=1-\sin (2\theta ),\:\theta\in [0,2\pi ]\)
    2. \(r=\sin (4\theta ),\:\theta\in [0,2\pi ]\)
    3. \(r=\cos (3\theta )+\sin (2\theta ),\: \theta\in [0,2\pi]\)
    4. \(r=\theta,\:\theta\in [0,15]\)

    Ejercicio\(\PageIndex{5}\)

    Grafica la ecuación polar\(r = 1+\sinθ\) para\(θ ∈ [0, 2π]\).

    Ejercicio\(\PageIndex{6}\)

    Grafica la ecuación polar\(r = 2+\sinθ\) para\(θ ∈ [0, 2π]\).

    Ejercicio\(\PageIndex{7}\)

    Grafica la ecuación polar\(r = 1+2 \sinθ\) para\(θ ∈ [0, 2π]\).

    Ejercicio\(\PageIndex{8}\)

    Grafica la ecuación polar\(r = 2+\sin(2θ)\) para\(θ ∈ [0, 2π]\).

    Ejercicio\(\PageIndex{9}\)

    Grafica la ecuación polar\(r = 1+\sin(2θ)\) para\(θ ∈ [0, 2π]\).

    Ejercicio\(\PageIndex{10}\)

    Grafica la ecuación polar\(r = 1+\sin(3θ)\) para\(θ ∈ [0, 2π]\).

    Ejercicio\(\PageIndex{11}\)

    Describir cómo resolver para\(r\) y\(θ\) en términos de\(x\) y\(y\) en coordenadas polares.

    Ejercicio\(\PageIndex{12}\)

    Este problema se refiere a las parábolas, elipses e hipérbolas y sus ecuaciones. Dejar\(l\),\(e > 0\) y considerar\[r=\frac{l}{1\pm e\cos\theta}\nonumber\] Mostrar que si\(e = 0\), la gráfica de esta ecuación da un círculo. Mostrar que si\(0 < e < 1\), la gráfica es una elipse, si\(e = 1\) es una parábola y si\(e > 1\), es una hipérbola.

    Ejercicio\(\PageIndex{13}\)

    Las siguientes son las coordenadas cilíndricas de los puntos,\((r,θ,z)\). Encuentra las coordenadas cartesianas y esféricas de cada punto.

    1. \((5,\frac{5\pi}{6},-3)\)
    2. \((3,\frac{\pi}{3},4)\)
    3. \((4,\frac{2\pi}{3},1)\)
    4. \((2,\frac{3\pi}{4},-2)\)
    5. \((3,\frac{3\pi}{2},-1)\)
    6. \((8,\frac{11\pi}{6},-11)\)

    Ejercicio\(\PageIndex{14}\)

    Las siguientes son las coordenadas cartesianas de puntos,\((x, y,z)\). Encuentra las coordenadas cilíndricas y esféricas de estos puntos.

    1. \((\frac{5}{2}\sqrt{2},\frac{5}{2}\sqrt{2},-3)\)
    2. \((\frac{3}{2},\frac{3}{2}\sqrt{3},2)\)
    3. \((-\frac{5}{2}\sqrt{2},\frac{5}{2}\sqrt{2},11)\)
    4. \((-\frac{5}{2},\frac{5}{2}\sqrt{3},23)\)
    5. \((-\sqrt{3},-1,-5)\)
    6. \((\frac{3}{2},-\frac{3}{2}\sqrt{3},-7)\)
    7. \((\sqrt{2},\sqrt{6},2\sqrt{2})\)
    8. \((-\frac{1}{2}\sqrt{3},\frac{3}{2},1)\)
    9. \((-\frac{3}{4}\sqrt{2},\frac{3}{4}\sqrt{2},-\frac{3}{2}\sqrt{3})\)
    10. \((-\sqrt{3}1,2\sqrt{3})\)
    11. \((-\frac{1}{4}\sqrt{2},\frac{1}{4}\sqrt{6},-\frac{1}{2}\sqrt{2})\)

    Ejercicio\(\PageIndex{15}\)

    Las siguientes son coordenadas esféricas de puntos en la forma\((ρ,φ,θ)\). Encuentra las coordenadas cartesianas y cilíndricas de cada punto.

    1. \((4,\frac{\pi}{4},\frac{5\pi}{6})\)
    2. \((2,\frac{\pi}{3},\frac{2\pi}{3})\)
    3. \((3,\frac{5\pi}{6},\frac{3\pi}{2})\)
    4. \((4,\frac{\pi}{2},\frac{7\pi}{4})\)
    5. \((4,\frac{2\pi}{3},\frac{\pi}{6})\)
    6. \((4,\frac{3\pi}{4},\frac{5\pi}{3})\)

    Ejercicio\(\PageIndex{16}\)

    Describir la superficie\(φ = π/4\) en coordenadas cartesianas, donde\(φ\) está el ángulo polar en coordenadas esféricas.

    Ejercicio\(\PageIndex{17}\)

    Describir la superficie\(θ = π/4\) en coordenadas esféricas, donde\(θ\) se mide el ángulo desde el\(x\) eje positivo.

    Ejercicio\(\PageIndex{18}\)

    Describir la superficie\(r=5\) en coordenadas cartesianas, donde\(r\) se encuentra una de las coordenadas cilíndricas.

    Ejercicio\(\PageIndex{19}\)

    Describir la superficie\(\rho =4\) en coordenadas cartesianas, donde\(\rho\) está la distancia al origen.

    Ejercicio\(\PageIndex{20}\)

    Dar el cono descrito por\(z=\sqrt{x^2+y^2}\) en coordenadas cilíndricas y en coordenadas esféricas.

    Ejercicio\(\PageIndex{21}\)

    Lo siguiente se describe en las coordenadas cartesianas. Reescribirlos en términos de coordenadas esféricas.

    1. \(z=x^2+y^2\)
    2. \(x^2-y^2=1\)
    3. \(z^2+x^2+y^2=6\)
    4. \(z=\sqrt{x^2+y^2}\)
    5. \(y=x\)
    6. \(z=x\)

    Ejercicio\(\PageIndex{22}\)

    Lo siguiente se describe en las coordenadas cartesianas. Reescribirlos en términos de coordenadas cilíndricas.

    1. \(z=x^2+y^2\)
    2. \(x^2-y^2=1\)
    3. \(z^2+x^2+y^2=6\)
    4. \(z=\sqrt{x^2+y^2}\)
    5. \(y=x\)
    6. \(z=x\)

    This page titled 8.E: Ejercicios is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform.