Saltar al contenido principal
LibreTexts Español

7.6: Teorema de Taylor revisitado

  • Page ID
    108778
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A continuación se presenta una versión del Teorema de Taylor con una forma alternativa del término restante.

    Teorema\(\PageIndex{1}\)

    (Teorema de Taylor)

    Supongamos\(f \in C^{(n+1)}(a, b), \alpha \in(a, b),\) y

    \[P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(\alpha)}{k !}(x-\alpha)^{k}.\]

    Entonces, para cualquier\(x \in(a, b)\),

    \[f(x)=P_{n}(x)+\int_{\alpha}^{x} \frac{f^{(n+1)}(t)}{n !}(x-t)^{n} d t.\]

    Prueba

    Por el Teorema Fundamental del Cálculo, tenemos

    \[\int_{\alpha}^{x} f^{\prime}(t) d t=f(x)-f(\alpha),\]

    lo que implica que

    \[f(x)=f(\alpha)+\int_{\alpha}^{x} f^{\prime}(t) d t.\]

    De ahí que el teorema se mantenga para\(n=0 .\) Supongamos que el resultado sostiene para\(n=k-1,\) eso es

    \[f(x)=P_{k-1}(x)+\int_{\alpha}^{x} \frac{f^{(k)}(t)}{(k-1) !}(x-t)^{k-1} d t.\]

    Let

    \[F(t)=f^{(k)}(t),\]

    \[g(t)=\frac{(x-t)^{k-1}}{(k-1) !},\]

    y

    \[G(t)=-\frac{(x-t)^{k}}{k !}.\]

    Entonces

    \[\begin{aligned} \int_{\alpha}^{x} \frac{f^{(k)}(t)}{(k-1) !}(x-t)^{k-1} d t &=\int_{\alpha}^{x} F(t) g(t) d t \\ &=F(x) G(x)-F(\alpha) G(\alpha)-\int_{\alpha}^{x} F^{\prime}(t) G(t) d t \\ &=\frac{f^{(k)}(\alpha)(x-\alpha)^{k}}{k !}+\int_{\alpha}^{x} \frac{f^{(k+1)}(t)}{k !}(x-t)^{k} d t, \end{aligned}\]

    De ahí

    \[f(x)=P_{k}(x)+\int_{\alpha}^{x} \frac{f^{(k+1)}(t)}{k !}(x-t)^{k} d t,\]

    y así el teorema se sostiene para\(n=k\). \(\quad\)Q.E.D.

    Ejercicio\(\PageIndex{1}\)

    (Forma Cauchy del resto)

    Bajo las condiciones del Teorema de Taylor como acabamos de afirmar, demostrar que

    \[\int_{\alpha}^{x} \frac{f^{(n+1)}(t)}{n !}(x-t)^{n} d t=\frac{f^{(n+1)}(\gamma)}{n !}(x-\gamma)^{n}(x-\alpha)\]

    para algunos\(\gamma\) entre\(\alpha\) y\(x .\)

    Ejercicio\(\PageIndex{2}\)

    (Forma Lagrange del resto)

    Bajo las condiciones del Teorema de Taylor como acabamos de afirmar, demostrar que

    \[\int_{\alpha}^{x} \frac{f^{(n+1)}(t)}{n !}(x-t)^{n} d t=\frac{f^{(n+1)}(\gamma)}{(n+1) !}(x-\alpha)^{n+1}\]

    para algunos\(\gamma\) entre\(\alpha\) y\(x .\) Tenga en cuenta que esta es la forma del resto en Teorema\(6.6 .1,\) aunque bajo supuestos ligeramente más restrictivos.


    This page titled 7.6: Teorema de Taylor revisitado is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.