7.6: Teorema de Taylor revisitado
- Page ID
- 108778
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A continuación se presenta una versión del Teorema de Taylor con una forma alternativa del término restante.
(Teorema de Taylor)
Supongamos\(f \in C^{(n+1)}(a, b), \alpha \in(a, b),\) y
\[P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(\alpha)}{k !}(x-\alpha)^{k}.\]
Entonces, para cualquier\(x \in(a, b)\),
\[f(x)=P_{n}(x)+\int_{\alpha}^{x} \frac{f^{(n+1)}(t)}{n !}(x-t)^{n} d t.\]
- Prueba
-
Por el Teorema Fundamental del Cálculo, tenemos
\[\int_{\alpha}^{x} f^{\prime}(t) d t=f(x)-f(\alpha),\]
lo que implica que
\[f(x)=f(\alpha)+\int_{\alpha}^{x} f^{\prime}(t) d t.\]
De ahí que el teorema se mantenga para\(n=0 .\) Supongamos que el resultado sostiene para\(n=k-1,\) eso es
\[f(x)=P_{k-1}(x)+\int_{\alpha}^{x} \frac{f^{(k)}(t)}{(k-1) !}(x-t)^{k-1} d t.\]
Let
\[F(t)=f^{(k)}(t),\]
\[g(t)=\frac{(x-t)^{k-1}}{(k-1) !},\]
y
\[G(t)=-\frac{(x-t)^{k}}{k !}.\]
Entonces
\[\begin{aligned} \int_{\alpha}^{x} \frac{f^{(k)}(t)}{(k-1) !}(x-t)^{k-1} d t &=\int_{\alpha}^{x} F(t) g(t) d t \\ &=F(x) G(x)-F(\alpha) G(\alpha)-\int_{\alpha}^{x} F^{\prime}(t) G(t) d t \\ &=\frac{f^{(k)}(\alpha)(x-\alpha)^{k}}{k !}+\int_{\alpha}^{x} \frac{f^{(k+1)}(t)}{k !}(x-t)^{k} d t, \end{aligned}\]
De ahí
\[f(x)=P_{k}(x)+\int_{\alpha}^{x} \frac{f^{(k+1)}(t)}{k !}(x-t)^{k} d t,\]
y así el teorema se sostiene para\(n=k\). \(\quad\)Q.E.D.
(Forma Cauchy del resto)
Bajo las condiciones del Teorema de Taylor como acabamos de afirmar, demostrar que
\[\int_{\alpha}^{x} \frac{f^{(n+1)}(t)}{n !}(x-t)^{n} d t=\frac{f^{(n+1)}(\gamma)}{n !}(x-\gamma)^{n}(x-\alpha)\]
para algunos\(\gamma\) entre\(\alpha\) y\(x .\)
(Forma Lagrange del resto)
Bajo las condiciones del Teorema de Taylor como acabamos de afirmar, demostrar que
\[\int_{\alpha}^{x} \frac{f^{(n+1)}(t)}{n !}(x-t)^{n} d t=\frac{f^{(n+1)}(\gamma)}{(n+1) !}(x-\alpha)^{n+1}\]
para algunos\(\gamma\) entre\(\alpha\) y\(x .\) Tenga en cuenta que esta es la forma del resto en Teorema\(6.6 .1,\) aunque bajo supuestos ligeramente más restrictivos.