Saltar al contenido principal
LibreTexts Español

4.2: Integrales de Línea Compleja

  • Page ID
    109797
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Las integrales de línea también se denominan integrales de ruta o de contorno. Dados los ingredientes definimos la línea complejaintegral\(\int_{\gamma} f(z)\ dz\) por

    \[\int_{\gamma} f(z)\ dz := \int_{a}^{b} f(\gamma (t)) \gamma ' (t)\ dt. \label{4.2.1}\]

    Debe tener en cuenta que esta notación se ve igual que integrales de una variable real. No necesitamos los vectores y los productos de punto de integrales de línea en\(R^2\). Además, asegúrate de entender que el producto\(f(\gamma (t)) \gamma '(t)\) es solo un producto de números complejos.

    Una notación alternativa utiliza\(dz = dx + idy\) para escribir

    \[\int_{\gamma} f(z)\ dz = \int_{\gamma} (u + iv) (dx + idy) \label{4.2.2}\]

    Comproquemos que las Ecuaciones\ ref {4.2.1} y\ ref {4.2.2} son las mismas. Ecuación\ ref {4.2.2} es realmente una expresión de cálculo multivariable, por lo que pensar en\(\gamma (t)\)\((x(t), y(t))\) lo que se convierte

    \[\int_{\gamma} f(z) \ dz = \int_a^b [u(x(t), y(t)) + iv (x(t), y(t)] (x'(t) + iy'(t))dt\]

    pero

    \[u(x(t), y(t)) + iv (x(t), y(t)) = f(\gamma (t))\]

    y

    \[x'(t) + iy'(t) = \gamma '(t)\]

    así que el lado derecho de la Ecuación\ ref {4.2.2} es

    \[\int_{a}^{b} f(\gamma (t)) \gamma '(t)\ dt.\]

    Es decir, es exactamente lo mismo que la expresión en Ecuación\ ref {4.2.1}

    Ejemplo\(\PageIndex{1}\)

    Calcular\(\int_{\gamma} z^2 \ dz\) a lo largo de la línea recta de 0 a\(1 + i\).

    Solución

    Parametrizamos la curva como\(\gamma (t) = t(1 + i)\) con\(0 \le t \le 1\). Entonces\(\gamma '(t) = 1 + i\). La línea integral es

    \[\int z^2 \ dz = \int_{0}^{1} t^2 (1 + i)^2 (1 + i)\ dt = \dfrac{2i(1 + i)}{3}. \nonumber\]

    Ejemplo\(\PageIndex{2}\)

    Calcular\(\int_{\gamma} \overline{z} \ dz\) a lo largo de la línea recta de 0 a\(1 + i\).

    Solución

    Podemos usar la misma parametrización que en el ejemplo anterior. Entonces,

    \[\int_{\gamma} \overline{z} \ dz = \int_{0}^{1} t(1 - i) (1 + i)\ dt = 1. \nonumber\]

    Ejemplo\(\PageIndex{3}\)

    Calcular\(\int_{\gamma} z^2\ dz\) a lo largo del círculo unitario.

    Solución

    Parametrizamos el círculo unitario por\(\gamma (\theta) = e^{i \theta}\), donde\(0 \le \theta \le 2\pi\). Nosotros tenemos\(\gamma '(\theta) = ie^{i\theta}\). Entonces, la integral se convierte

    \[\int_{\gamma} z^2 \ dz = \int_{0}^{2\pi} e^{2i \theta} i e^{i \theta} \ d \theta = \int_{0}^{2\pi} ie^{3i\theta}\ d \theta = \dfrac{e^{3i\theta}}{3} \vert_{0}^{2\pi} = 0. \nonumber\]

    Ejemplo\(\PageIndex{4}\)

    Calcular\(\int \overline{z}\ dz\) a lo largo del círculo unitario.

    Solución

    Parametrizar\(C\):\(\gamma (t) = e^{it}\), con\(0 \le t \le 2\pi\). Entonces,\(\gamma '(t) = ie^{it}\). Poniendo esto en la integral da

    \[\int_{C} \overline{z}\ dz = \int_{0}^{2\pi} \overline{e^{it}} i e^{it} \ dt = \int_{0}^{2\pi} i \ dt = 2\pi i.\nonumber\]


    This page titled 4.2: Integrales de Línea Compleja is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.