Loading [MathJax]/jax/output/HTML-CSS/jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

Variables complejas con aplicaciones (Orloff)

( \newcommand{\kernel}{\mathrm{null}\,}\)

El análisis complejo es un tema hermoso y estrechamente integrado. Gira en torno a funciones analíticas complejas. Estas son funciones que tienen una derivada compleja. A diferencia del cálculo que utiliza variables reales, la mera existencia de una derivada compleja tiene fuertes implicaciones para las propiedades de la función. El análisis complejo es una herramienta básica en muchas teorías matemáticas. Por sí mismo y a través de algunas de estas teorías también tiene muchas aplicaciones prácticas. Hay una pequeña cantidad de teoremas de largo alcance que exploraremos en la primera parte de la clase. En el camino, tocaremos algunas aplicaciones matemáticas y de ingeniería de estos teoremas. El último tercio de la clase estará dedicado a una mirada más profunda a las aplicaciones. Los teoremas principales son el teorema de Cauchy, la fórmula integral de Cauchy y la existencia de las series Taylor y Laurent. Entre las aplicaciones estarán funciones armónicas, flujo de fluido bidimensional, métodos fáciles para computar (aparentemente) integrales duras, transformadas de Laplace y transformadas de Fourier con aplicaciones a ingeniería y física.

Miniatura: Ilustración de un número complejo que muestra la naturaleza multivalor de los argumentos. (CC BY-SA 3.0 Unported; Wolfkeeper vía Wikipedia)


This page titled Variables complejas con aplicaciones (Orloff) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?