6.3E: El Circuito RLC (Ejercicios)
- Page ID
- 115020
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Q6.3.1
En Ejercicios 6.3.1-6.3.5 encontrar la corriente en el\(RLC\) circuito, asumiendo que\(E(t)=0\) para\(t>0\).
1. \(R=3\)ohmios;\(L=.1\) henrys;\(C=.01\) faradios;\(Q_0=0\) culombios;\(I_0=2\) amperios.
2. \(R=2\)ohmios;\(L=.05\) henrys;\(C=.01\) farads';\(Q_0=2\) culombios;\(I_0=-2\) amperios.
3. \(R=2\)ohmios;\(L=.1\) henrys;\(C=.01\) faradios;\(Q_0=2\) culombios;\(I_0=0\) amperios.
4. \(R=6\)ohmios;\(L=.1\) henrys;\(C=.004\) farads';\(Q_0=3\) culombios;\(I_0=-10\) amperios.
5. \(R=4\)ohmios;\(L=.05\) henrys;\(C=.008\) faradios;\(Q_0=-1\) culombios;\(I_0=2\) amperios.
Q6.3.2
En Ejercicios 6.3.6-6.3.10 encuentra la corriente de estado estacionario en el circuito descrito por la ecuación.
6. \({1\over10}Q''+3Q'+100Q=5\cos10t-5\sin10t\)
7. \({1\over20}Q''+2Q'+100Q=10\cos25t-5\sin25t\)
8. \({1\over10}Q''+2Q'+100Q=3\cos50t-6\sin50t\)
9. \({1\over10}Q''+6Q'+250Q=10\cos100t+30\sin100t\)
10. \({1\over20}Q''+4Q'+125Q=15\cos30t-30\sin30t\)
Q6.3.3
11. Mostrar que si\(E(t)=U\cos\omega t+V\sin\omega t\) donde\(U\) y\(V\) son constantes entonces la corriente de estado estacionario en el\(RLC\) circuito que se muestra en la Figura 6.3.1 es\[I_p={\omega^2RE(t)+(1/C-L\omega^2)E'(t)\over\Delta},\] donde\[\Delta=(1/C-L\omega^2)^2+R^2\omega^2.\]
12. Encuentre la amplitud de la corriente de estado estacionario\(I_p\) en el\(RLC\) circuito que se muestra en la Figura 6.3.1 si\(E(t)=U\cos\omega t+V\sin\omega t\), donde\(U\) y\(V\) son constantes. Entonces encuentra el valor\(\omega_0\) de\(\omega\) maximiza la amplitud, y encuentra la amplitud máxima.
Q6.3.4
En Ejercicios 6.3.13-6.3.17 trazar la amplitud de la corriente de estado estacionario contra\(ω\). Estimar el valor de\(ω\) que maximiza la amplitud de la corriente de estado estacionario, y estime esta amplitud máxima. SUMINACIÓN: Puedes confirmar tus resultados haciendo el Ejercicio 6.3.12.
13. \({1\over10}Q''+3Q'+100Q=U\cos\omega t+V\sin\omega t\)
14. \({1\over20}Q''+2Q'+100Q=U\cos\omega t+V\sin\omega t\)
15. \({1\over10}Q''+2Q'+100Q=U\cos\omega t+V\sin\omega t\)
16. \({1\over10}Q''+6Q'+250Q=U\cos\omega t+V\sin\omega t\)
17. \({1\over20}Q''+4Q'+125Q=U\cos\omega t+V\sin\omega t\)