8.2E: La Transformación Inversa de Laplace (Ejercicios)
- Page ID
- 114899
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Q8.2.1
1. Utilice la tabla de transformaciones de Laplace para encontrar la transformada inversa de Laplace.
- \( {3\over(s-7)^4}\)
- \( {2s-4\over s^2-4s+13}\)
- \( {1\over s^2+4s+20}\)
- \( {2\over s^2+9}\)
- \( {s^2-1\over(s^2+1)^2}\)
- \( {1\over(s-2)^2-4}\)
- \( {12s-24\over(s^2-4s+85)^2}\)
- \( {2\over(s-3)^2-9}\)
- \( {s^2-4s+3\over(s^2-4s+5)^2}\)
2. Utilice el Teorema 8.2.1 y la tabla de transformaciones de Laplace para encontrar la transformada inversa de Laplace.
- \( {2s+3\over(s-7)^4}\)
- \( {s^2-1\over(s-2)^6}\)
- \( {s+5\over s^2+6s+18}\)
- \( {2s+1\over s^2+9}\)
- \( {s\over s^2+2s+1}\)
- \( {s+1\over s^2-9}\)
- \( {s^3+2s^2-s-3\over(s+1)^4}\)
- \( {2s+3\over(s-1)^2+4}\)
- \( {1\over s}-{s\over s^2+1}\)
- \( {3s+4\over s^2-1}\)
- \( {3\over s-1}+{4s+1\over s^2+9}\)
- \( {3\over(s+2)^2}-{2s+6\over s^2+4}\)
3. Usa el método de Heaviside para encontrar la transformada inversa de Laplace.
- \( {3-(s+1)(s-2)\over(s+1)(s+2)(s-2)}\)
- \( {7+(s+4)(18-3s)\over(s-3)(s-1)(s+4)}\)
- \( {2+(s-2)(3-2s)\over(s-2)(s+2)(s-3)}\)
- \( {3-(s-1)(s+1)\over(s+4)(s-2)(s-1)}\)
- \( {3+(s-2)(10-2s-s^2)\over(s-2)(s+2)(s-1)(s+3)}\)
- \( {3+(s-3)(2s^2+s-21)\over(s-3)(s-1)(s+4)(s-2)}\)
4. Encuentra la transformada inversa de Laplace.
- \( {2+3s\over(s^2+1)(s+2)(s+1)}\)
- \( {3s^2+2s+1\over(s^2+1)(s^2+2s+2)}\)
- \( {3s+2\over(s-2)(s^2+2s+5)}\)
- \( {3s^2+2s+1\over(s-1)^2(s+2)(s+3)}\)
- \( {2s^2+s+3\over(s-1)^2(s+2)^2}\)
- \( {3s+2\over(s^2+1)(s-1)^2}\)
5. Utilice el método del Ejemplo 8.2.9 para encontrar la transformada inversa de Laplace.
- \( {3s+2\over(s^2+4)(s^2+9)}\)
- \( {-4s+1\over(s^2+1)(s^2+16)}\)
- \( {5s+3\over(s^2+1)(s^2+4)}\)
- \( {-s+1\over(4s^2+1)(s^2+1)}\)
- \( {17s-34\over(s^2+16)(16s^2+1)}\)
- \( {2s-1\over(4s^2+1)(9s^2+1)}\)
6. Encuentra la transformada inversa de Laplace.
- \( {17 s-15\over(s^2-2s+5)(s^2+2s+10)}\)
- \( {8s+56\over(s^2-6s+13)(s^2+2s+5)}\)
- \( {s+9\over(s^2+4s+5)(s^2-4s+13)}\)
- \( {3s-2\over(s^2-4s+5)(s^2-6s+13)}\)
- \( {3s-1\over(s^2-2s+2)(s^2+2s+5)}\)
- \( {20s+40\over(4s^2-4s+5)(4s^2+4s+5)}\)
7. Encuentra la transformada inversa de Laplace.
- \( {1\over s(s^2+1)}\)
- \( {1\over(s-1)(s^2-2s+17)}\)
- \( {3s+2\over(s-2)(s^2+2s+10)}\)
- \( {34-17s\over(2s-1)(s^2-2s+5)}\)
- \( {s+2\over(s-3)(s^2+2s+5)}\)
- \( {2s-2\over(s-2)(s^2+2s+10)}\)
8. Encuentra la transformada inversa de Laplace.
- \( {2s+1\over(s^2+1)(s-1)(s-3)}\)
- \( {s+2\over(s^2+2s+2)(s^2-1)}\)
- \( {2s-1\over(s^2-2s+2)(s+1)(s-2)}\)
- \( {s-6\over(s^2-1)(s^2+4)}\)
- \( {2s-3\over s(s-2)(s^2-2s+5)}\)
- \( {5s-15\over(s^2-4s+13)(s-2)(s-1)}\)
9. Dado eso\(f(t)\leftrightarrow F(s)\), encontrar la transformada inversa de Laplace de\(F(as-b)\), dónde\(a>0\).
10.
- Si\(s_1\),\(s_2\),...,\(s_n\) son distintos y\(P\) es un polinomio de grado menor que\(n\), entonces\[{P(s)\over(s-s_1)(s-s_2)\cdots(s-s_n)}= {A_1\over s-s_1}+{A_2\over s-s_2}+\cdots+{A_n\over s-s_n}.\nonumber \] Multiplicar a través por\(s-s_i\) para mostrar que se\(A_i\) puede obtener ignorando el factor de la izquierda y fijando\(s-s_i\) en\(s=s_i\) otra parte.
- Supongamos\(P\) y\(Q_1\) son polinomios tales que\(\mbox{degree}(P)\le\mbox{degree}(Q_1)\) y\(Q_1(s_1)\ne0\). Demostrar que el coeficiente\(1/(s-s_1)\) de expansión de fracción parcial de\[F(s)={P(s)\over(s-s_1)Q_1(s)}\nonumber \] es\(P(s_1)/Q_1(s_1)\).
- Explicar cómo se relacionan los resultados de (a) y (b).