9.3E: Coeficientes indeterminados para ecuaciones de orden superior (ejercicios)
- Page ID
- 114621
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Q9.3.1
En Ejercicios 9.3.1-9.3.59 encuentra una solución particular.
1. \(y'''-6y''+11y'-6y=-e^{-x}(4+76x-24x^2)\)
2. \(y'''-2y''-5y'+6y=e^{-3x}(32-23x+6x^2)\)
3. \(4y'''+8y''-y'-2y=-e^x(4+45x+9x^2)\)
4. \(y'''+3y''-y'-3y=e^{-2x}(2-17x+3x^2)\)
5. \(y'''+3y''-y'-3y=e^x(-1+2x+24x^2+16x^3)\)
6. \(y'''+y''-2y=e^x(14+34x+15x^2)\)
7. \(4y'''+8y''-y'-2y=-e^{-2x}(1-15x)\)
8. \(y'''-y''-y'+y=e^x(7+6x)\)
9. \(2y'''-7y''+4y'+4y=e^{2x}(17+30x)\)
10. \(y'''-5y''+3y'+9y=2e^{3x}(11-24x^2)\)
11. \(y'''-7y''+8y'+16y=2e^{4x}(13+15x)\)
12. \(8y'''-12y''+6y'-y=e^{x/2}(1+4x)\)
13. \(y^{(4)}+3y'''-3y''-7y'+6y=-e^{-x}(12+8x-8x^2)\)
14. \(y^{(4)}+3y'''+y''-3y'-2y=-3e^{2x}(11+12x)\)
15. \(y^{(4)}+8y'''+24y''+32y'=-16e^{-2x}(1+x+x^2-x^3)\)
16. \(4y^{(4)}-11y''-9y'-2y=-e^x(1-6x)\)
17. \(y^{(4)}-2y'''+3y'-y=e^x(3+4x+x^2)\)
18. \(y^{(4)}-4y'''+6y''-4y'+2y=e^{2x}(24+x+x^4)\)
19. \(2y^{(4)}+5y'''-5y'-2y=18e^x(5+2x)\)
20. \(y^{(4)}+y'''-2y''-6y'-4y=-e^{2x}(4+28x+15x^2)\)
21. \(2y^{(4)}+y'''-2y'-y=3e^{-x/2}(1-6x)\)
22. \(y^{(4)}-5y''+4y=e^x(3+x-3x^2)\)
23. \(y^{(4)}-2y'''-3y''+4y'+4y=e^{2x}(13+33x+18x^2)\)
24. \(y^{(4)}-3y'''+4y'=e^{2x}(15+26x+12x^2)\)
25. \(y^{(4)}-2y'''+2y'-y=e^x(1+x)\)
26. \(2y^{(4)}-5y'''+3y''+y'-y=e^x(11+12x)\)
27. \(y^{(4)}+3y'''+3y''+y'=e^{-x}(5-24x+10x^2)\)
28. \(y^{(4)}-7y'''+18y''-20y'+8y=e^{2x}(3-8x-5x^2)\)
29. \(y'''-y''-4y'+4y=e^{-x}\left[(16+10x)\cos x+(30-10x)\sin x\right]\)
30. \(y'''+y''-4y'-4y=e^{-x}\left[(1-22x)\cos 2x-(1+6x)\sin2x\right]\)
31. \(y'''-y''+2y'-2y=e^{2x}[(27+5x-x^2)\cos x+(2+13x+9x^2)\sin x]\)
32. \(y'''-2y''+y'-2y=-e^x[(9-5x+4x^2)\cos 2x-(6-5x-3x^2)\sin2x]\)
33. \(y'''+3y''+4y'+12y=8\cos2x-16\sin2x\)
34. \(y'''-y''+2y=e^x[(20+4x)\cos x-(12+12x)\sin x]\)
35. \(y'''-7y''+20y'-24y=-e^{2x}[(13-8x)\cos 2x-(8-4x)\sin2x]\)
36. \(y'''-6y''+18y'=-e^{3x}[(2-3x)\cos 3x-(3+3x)\sin3x]\)
37. \(y^{(4)}+2y'''-2y''-8y'-8y=e^x(8\cos x+16\sin x)\)
38. \(y^{(4)}-3y'''+2y''+2y'-4y=e^x(2\cos2x -\sin2x)\)
39. \(y^{(4)}-8y'''+24y''-32y'+15y=e^{2x}(15x\cos2x+32\sin2x)\)
40. \(y^{(4)}+6y'''+13y''+12y'+4y=e^{-x}[(4-x)\cos x-(5+x)\sin x]\)
41. \(y^{(4)}+3y'''+2y''-2y'-4y=-e^{-x} (\cos x-\sin x)\)
42. \(y^{(4)}-5y'''+13y''-19y'+10y=e^x (\cos2x+\sin2x)\)
43. \(y^{(4)}+8y'''+32y''+64y'+39y=e^{-2x}[(4-15x)\cos3x-(4+15x)\sin 3x]\)
44. \(y^{(4)}-5y'''+13y''-19y'+10y=e^x[(7+8x)\cos 2x+(8-4x)\sin2x]\)
45. \(y^{(4)}+4y'''+8y''+8y'+4y=-2e^{-x} (\cos x-2\sin x)\)
46. \(y^{(4)}-8y'''+32y''-64y'+64y=e^{2x} (\cos2x-\sin2x)\)
47. \(y^{(4)}-8y'''+26y''-40y'+25y=e^{2x}[3\cos x-(1+3x)\sin x]\)
48. \(y'''-4y''+5y'-2y=e^{2x}-4e^x-2\cos x+4\sin x\)
49. \(y'''-y''+y'-y=5e^{2x}+2e^x-4\cos x+4\sin x\)
50. \(y'''-y'=-2(1+x)+4e^x-6e^{-x}+96e^{3x}\)
51. \(y'''-4y''+9y'-10y=10e^{2x}+20e^x\sin2x-10\)
52. \(y'''+3y''+3y'+y=12e^{-x}+9\cos2x-13\sin2x\)
53. \(y'''+y''-y'-y=4e^{-x}(1-6x)-2x\cos x+2(1+x)\sin x\)
54. \(y^{(4)}-5y''+4y=-12e^x+6e^{-x}+10\cos x\)
55. \(y^{(4)}-4y'''+11y''-14y'+10y=-e^x(\sin x+2\cos2x)\)
56. \(y^{(4)}+2y'''-3y''-4y'+4y=2e^x(1+x)+e^{-2x}\)
57. \(y^{(4)}+4y=\sinh x\cos x-\cosh x\sin x\)
58. \(y^{(4)}+5y'''+9y''+7y'+2y=e^{-x}(30+24x)-e^{-2x}\)
59. \(y^{(4)}-4y'''+7y''-6y'+2y=e^x(12x-2\cos x+2\sin x)\)
Q9.3.2
En Ejercicios 9.3.60-9.3.68 encuentra la solución general.
60. \(y'''-y''-y'+y=e^{2x}(10+3x)\)
61. \(y'''+y''-2y=-e^{3x}(9+67x+17x^2)\)
62. \(y'''-6y''+11y'-6y=e^{2x}(5-4x-3x^2)\)
63. \(y'''+2y''+y'=-2e^{-x}(7-18x+6x^2)\)
64. \(y'''-3y''+3y'-y=e^x(1+x)\)
65. \(y^{(4)}-2y''+y=-e^{-x}(4-9x+3x^2)\)
66. \(y'''+2y''-y'-2y=e^{-2x}\left[(23-2x)\cos x+(8-9x)\sin x\right]\)
67. \(y^{(4)}-3y'''+4y''-2y'=e^x\left[(28+6x)\cos 2x+(11-12x)\sin2x\right]\)
68. \(y^{(4)}-4y'''+14y''-20y'+25y=e^x\left[(2+6x)\cos 2x+3\sin2x\right]\)
Q9.3.3
En Ejercicios 9.3.69-9.3.74 resolver el problema de valor inicial y graficar la solución.
69. \(y'''-2y''-5y'+6y=2e^x(1-6x),\quad y(0)=2, \quad y'(0)=7,\quad y''(0)=9\)
70. \(y'''-y''-y'+y=-e^{-x}(4-8x),\quad y(0)=2, \quad y'(0)=0,\quad y''(0)=0\)
71. \(4y'''-3y'-y=e^{-x/2}(2-3x),\quad y(0)=-1, \quad y'(0)=15,\quad y''(0)=-17\)
72. \(y^{(4)}+2y'''+2y''+2y'+y=e^{-x}(20-12x),\, y(0)=3,\; y'(0)=-4,\; y''(0)=7,\; y'''(0)=-22\)
73. \(y'''+2y''+y'+2y=30\cos x-10\sin x, \quad y(0)=3,\quad y'(0)=-4,\quad y''(0)=16\)
74. \(y^{(4)}-3y'''+5y''-2y'=-2e^x(\cos x-\sin x),\; y(0)=2,\; y'(0)=0,\; y''(0)~=~-1, \; y'''(0)=-5\)
Q9.3.4
75. Demostrar: Una función\(y\) es una solución de la ecuación no homogénea del coeficiente constante
\[a_0y^{(n)}+a_1y^{(n-1)}+\cdots+a_ny=e^{\alpha x}G(x) \tag{A}\]
si y solo si\(y=ue^{\alpha x}\), donde\(u\) satisface la ecuación diferencial
\[a_0u^{(n)}+{p^{(n-1)}(\alpha)\over(n-1)!}u^{(n-1)}+ {p^{(n-2)}(\alpha)\over(n-2)!}u^{(n-2)}+\cdots+p(\alpha)u=G(x) \tag{B}\]
y
\[p(r)=a_0r^n+a_1r^{n-1} + \cdots + a_n\nonumber\]
es el polinomio característico de la ecuación complementaria
\[a_0y^{(n)}+a_1y^{(n-1)}+\cdots+a_ny=0.\nonumber\]
76. Demostrar:
- La ecuación\[\begin{array}{lll}{a_{0}u^{(n)}}&{+}&{\frac{p^{(n-1)}(\alpha )}{(n-1)!}u^{(n-1)}+\frac{p^{(n-2)}(\alpha )}{(n-2)!}u^{(n-2)}+\cdots + P(\alpha )u}\\{}&{=}&{(p_{0}+p_{1}x+\cdots +p_{k}x^{k})\cos\omega x} \\ {}&{+}&{(q_{0}+q_{1}x+\cdots +q_{k}x^{k})\sin\omega x} \end{array}\tag{A}\] tiene una solución particular de la forma\[u_p=x^m\left(u_0+u_1x+\cdots+u_kx^k\right)\cos\omega x+ \left(v_0+v_1x+\cdots+v_kx^k\right)\sin\omega x.\nonumber\]
- Si\(\lambda+i\omega\) es un cero de\(p\) con multiplicidad\(m\ge1\), entonces (A) puede escribirse como\[a(u''+\omega^2 u)= \left(p_0+p_1x+\cdots+p_kx^k\right)\cos\omega x+ \left(q_0+q_1x+\cdots+q_kx^k\right)\sin\omega x,\nonumber\] que tiene una solución particular de la forma\[u_p=U(x)\cos\omega x+V(x)\sin\omega x,\nonumber\] donde\[U(x)=u_0x+u_1x^2+\cdots+u_kx^{k+1},\,V(x)=v_0x+v_1x^2+\cdots+v_kx^{k+1}\nonumber\] y\[\begin{array}{rcl} a(U''(x)+2\omega V'(x))&=&p_0+p_1x+\cdots+p_kx^k\\[10pt] a(V''(x)-2\omega U'(x))&=&q_0+q_1x+\cdots+q_kx^k. \end{array}\nonumber\]