8.2: Los enteros
- Page ID
- 118363
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Construimos los enteros a partir de los números naturales. El propósito algebraico de los números enteros es incluir inversas aditivas para números naturales. Por supuesto esto naturalmente da lugar a la operación de resta.
Vamos\(Z=\mathbb{N} \times \mathbb{N}\). Definir una relación de equivalencia,\(\sim\) on\(Z\) by\[\left\langle m_{1}, n_{1}\right\rangle \sim\left\langle m_{2}, n_{2}\right\rangle \quad \Longleftrightarrow \quad m_{1}+n_{2}=m_{2}+n_{1} .\] Entonces los enteros son\[\mathbf{Z}:=Z / \sim .\] Pensamos en el par ordenado\(\langle m, n\rangle \in \mathbf{Z}\) como un representante del entero\(m-n\). Decimos que un entero es positivo si\(m>n\) y negativo si\(m<n\). Debe quedar claro que el conjunto de enteros no negativos (es decir\(\mathbb{N}\)) es\[\{[\langle m, n\rangle] \mid m \geq n\}=\{[\langle m, 0\rangle] \mid m \in \mathbb{N}\} .\] Let\(\mathbb{Z}\) be the (intuitivo) integer y let\(i: \mathbf{Z} \rightarrow \mathbb{Z}\) be defined by\[i([\langle m, n\rangle])=m-n .\] Then\(i\) es una biyección. Como hicimos con los números naturales, construiremos operaciones y ordenaremos sobre\(\mathbf{Z}\) eso de acuerdo con las operaciones habituales y un orden encendido\(\mathbb{Z}\). Por supuesto, podríamos usar\(i\) y las definiciones habituales en\(\mathbb{Z}\) para definir operaciones y relaciones sobre\(\mathbf{Z}\), pero eso extrañaría el espíritu de la construcción, y descuidaría el deseo de establecer definiciones teóricas. Análogamente a la construcción de la sección anterior, definimos\(\mathbb{Z}\) como\(\mathbf{Z}\). Dejemos\(x_{1}, x_{2} \in \mathbb{Z}\) dónde\(x_{1}=\left[\left\langle m_{1}, n_{1}\right\rangle\right]\) y\(x_{2}=\left[\left\langle m_{2}, n_{2}\right\rangle\right]\). La adición se define por\[x_{1}+x_{2}=\left[\left\langle m_{1}+m_{2}, n_{1}+n_{2}\right\rangle\right] .\] La inversa aditiva de\([\langle m, n\rangle]\) es\([\langle n, m\rangle]\) (es decir, la suma de estos números enteros es\([\langle 0,0\rangle]\) - la identidad aditiva en\(\mathbb{Z})\).
La multiplicación se define por\[x_{1} \cdot x_{2}=\left[\left\langle m_{1} \cdot m_{2}+n_{1} \cdot n_{2}, n_{1} \cdot m_{2}+m_{1} \cdot n_{2}\right\rangle\right] .\] El orden lineal en\(\mathbb{Z}\) se define por la\[x_{1} \leq x_{2} \Longleftrightarrow m_{1}+n_{2} \leq n_{1}+m_{2} .\] suma y la multiplicación se han definido para los números naturales, y las operaciones y el orden lineal en\(\mathbb{Z}\) se definen con respecto a las operaciones y el orden lineal que se definieron previamente para\(\mathbb{N}\). Obsérvese que todas nuestras definiciones fueron dadas en términos de representantes de clases de equivalencia. Para demostrarlo\(+, \cdot\) y\(\leq\) estar bien definidos, debemos demostrar que las definiciones son independientes de la elección del representante - ver Ejercicio 8.6.