Saltar al contenido principal
LibreTexts Español

2.3: La fórmula de la distancia

  • Page ID
    112508
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    En la sección anterior se enseñaba a trazar puntos en el plano de coordenadas rectangulares. Esta sección enseña cómo encontrar la distancia entre dos puntos cualesquiera en el plano. Por ejemplo, para encontrar la distancia de puntos\((x_1, y_1)\) y\((x_2, y_2)\) considerar la siguiente fórmula:

    Definición: Fórmula de distancia

    La distancia d entre dos puntos,\(P_1(x_1, y_1)\) y\(P_2(x_2, y_2)\) en el plano viene dada por:

    \(d = \sqrt {(x_2 − x_1) ^2 + (y_2 − y_1)} ^2\)

    Ejemplo 2.3.1

    Encuentra la distancia entre los puntos\((−5, 2)\) y\((3, 4)\)

    Solución

    Dejar\(P_1(−5, 2)\) y\(P_2(3, 4)\) ser dos puntos en el plano y dejar\(x_1 = −5\),\(y_1 = 2\),\(x_2 = 3\), y\(y_2 = 4\).

    Usando la fórmula de distancia con los valores dados:

    \(\begin{aligned} d &= \sqrt{(x_2 − x_1) ^2 + (y_2 − y_1) ^2 } \\&= \sqrt{ (3 − (−5))^2 + (4 − 2)^2}\\& = \sqrt{ (3 + 5)^2 + (2)^2 } \\ &= \sqrt{ 8 ^2 + 2^2} \\ &= \sqrt{64 + 4 }\\ &= \sqrt{ 68 } \\&= 2\sqrt{17}\end{aligned}\)

    Por lo tanto, la distancia entre los dos puntos dados es\(2\sqrt{17}\).

    Ejemplo 2.3.2

    Encuentra la distancia entre los puntos\((−2.5, −1)\) y\((−3, −1.5)\).

    Solución

    Dejar\(P_1(−2.5, −1)\) y\(P_2(−3, −1.5)\) ser puntos en el plano y dejar\(x_1 = −2.5\),\(y_1 = −1\),\(x_2 = −3\) y\(y_2 = −1.5\).

    Luego usando la fórmula de distancia con los valores dados rinde,

    \(\begin{aligned} d &= \sqrt{(x_2 − x_1) ^2 + (y_2 − y_1) ^2}\\& = \sqrt{[−3 − (−2.5)]^2 + [−1.5 − (−1)]^2 } \\&= \sqrt{ (−3 + 2.5)^2 + (−1.5 + 1)^2} \\&= \sqrt{ (−0.5)^2 + (−0.5)^2 } \\&= \sqrt{ 0.25 + 0.25 }\\ &= \sqrt{0.5 } \\&\approx 0.71 \end{aligned}\)

    Por lo tanto, la distancia entre los dos puntos dados es de aproximadamente 0.71.

    Ejercicio 2.3.1
    1. Encuentra la distancia entre\(P_1(−3, −1.5)\) y\(P_2(−2.5, − 1)\). Compara la respuesta con la respuesta en el ejemplo 2. ¿Qué se puede concluir?
    2. Encuentra la distancia entre\((−3, 6)\) y\((2, 4)\)
    3. Encuentra la distancia entre los puntos\(\left( \dfrac{1 }{2} , − \dfrac{10 }{4}\right)\) y\(\left(− \dfrac{14 }{4} , − \dfrac{5 }{2}\right )\)
    4. ¿Por qué se utiliza la fórmula de distancia?

    This page titled 2.3: La fórmula de la distancia is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Victoria Dominguez, Cristian Martinez, & Sanaa Saykali (ASCCC Open Educational Resources Initiative) .