Saltar al contenido principal
LibreTexts Español

8.1: Suma y resta polinomial (y combinación de términos similares)

  • Page ID
    112487
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Definición: Términos similares

    Para sumar y restar polinomios, combine términos similares. Los términos similares tienen las mismas variables con los mismos exponentes. Los coeficientes de los términos pueden ser diferentes.

    Tenga cuidado a la hora de restar, de distribuir la resta (piense en ello como una suma de\((−1)\) veces el polinomio).

    Ejemplo 8.1.1

    Suma o resta los polinomios:

    1. \((−6a^3 + 5a^2 − 7a − 9) + (3a^3 + 5a^2 + a + 8)\)
    2. \((4x^2 − 3) + (3x^2 − 8x + 7)\)
    3. \((3x^2 − 4x + 6) − (2x^2 − x − 9)\)
    4. \((−4x^3 + 5x^2 + 15) − (2x^2 − 4x + 9)\)
    Solución
    1. \(\begin{array} &&(−6a^3+5a^2−7a−9)+(3a^3+5a^2+a+8) &\text{Example problem} \\ &−6a^3 + 3a^3 + 5a^2 + 5a^2 − 7a + a − 9 + 8 &\text{Pair like terms together} \\ &−3a^3 + 10a 2 − 6a − 1 &\text{Solution} \end{array}\)
    1. \(\begin{array} &&(4x^2 − 3) + (3x^2 − 8x + 7) &\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\text{Example problem} \\ &4x^2 + 3x^2 − 8x − 3 + 7 &\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\text{Pair like terms together} \\ &7x^2 − 8x + 4 &\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\text{Solution} \end{array}\)
    1. \(\begin{array} &&(3x^2 − 4x + 6) − (2x^2 − x − 9) \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;&\text{Example problem} \\ &3x^2 − 2x^2 − 4x + x + 6 + 9 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;&\text{Distribute the subtraction and pair like terms together} \\ &x^2 − 3x + 15 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;&\text{Solution} \end{array}\)
    1. \(\begin{array} &&(−4x^3 + 5x^2 + 15) − (2x^2 − 4x + 9) \;\;\;\;\;\;\;\;\;\;\;&\text{Example problem} \\ &−4x^3 + 5x^2 − 2x^2 + 4x + 15 − 9 \;\;\;\;\;\;\;\;\;\;\;&\text{Distribute the subtraction and pair like terms together} \\ &−4x^3 + 3x^2 + 4x + 6 \;\;\;\;\;\;\;\;\;\;\;&\text{Solution} \end{array}\)
    Ejercicio 8.1.1

    Suma o resta los polinomios

    1. \((5x^2 + 8) − (x^2 + 4x + 3)\)
    2. \((x^3 − 14x^2 ) − (−4x^3 + 5x^2 + 8)\)
    3. \((6x^2 + 7x − 9) + (−9x^2 + 2)\)
    4. \((x^3 + 6x^2 − 8x + 14) + (9x^3 − 7x^2 + 5x − 11)\)
    5. \((3x − 4) − (2x^2 − 3x − 9)\)
    6. \((2x^2 + x + 3) − (5x^2 − 1)\)