11.9: Examen de Aptitud
- Page ID
- 116367
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Examen de competencia
Para los problemas 1 y 2 especificar cada término.
Ejercicio\(\PageIndex{1}\)
([link])\(5x + 6y + 3z\).
- Contestar
-
\(5x, 6y, 3z\)
Ejercicio\(\PageIndex{2}\)
([enlace])\(8m - 2n - 4\)
- Contestar
-
\(8m, -2n, -4\)
Ejercicio\(\PageIndex{3}\)
([link]) En la expresión\(-9a\), ¿cuántos\(a\) se indican?
- Contestar
-
-9
Para los problemas 4-9, encuentra el valor de cada expresión.
Ejercicio\(\PageIndex{4}\)
([link])\(6a - 3b\), si\(a = -2\), y\(b = -1\).
- Contestar
-
-9
Ejercicio\(\PageIndex{5}\)
([link])\(-5m + 2n - 6\), si\(m = -1\) y\(n = 4\).
- Contestar
-
7
Ejercicio\(\PageIndex{6}\)
([link])\(-x^2 + 3x - 5\), si\(x = -2\).
- Contestar
-
-15
Ejercicio\(\PageIndex{7}\)
([link])\(y^2 + 9y + 1\), si\(y = 0\)
- Contestar
-
1
Ejercicio\(\PageIndex{8}\)
([link])\(-a^3 + 3a + 4\), si\(a = 4\).
- Contestar
-
0
Ejercicio\(\PageIndex{9}\)
([link])\(-(5 - x)^2 + 7(m - x) + x - 2m\), si\(x = 5\) y\(m = 5\).
- Contestar
-
-5
Para los problemas 10-12, simplifique cada expresión combinando términos similares.
Ejercicio\(\PageIndex{10}\)
([enlace])\(6y + 5 - 2y + 1\)
- Contestar
-
\(4y + 6\)
Ejercicio\(\PageIndex{11}\)
([link])\(14a - 3b + 5b - 6a - b\).
- Contestar
-
\(8a + b\)
Ejercicio\(\PageIndex{12}\)
([link])\(8x + 5y - 7 + 4x - 6y + 3(-2)\).
- Contestar
-
\(13x - y - 13\)
Para los problemas 13-22, resolver cada ecuación.
Ejercicio\(\PageIndex{13}\)
([link])\(x + 7 = 15\).
- Contestar
-
\(x = 8\)
Ejercicio\(\PageIndex{14}\)
([enlace])\(y - 6 = 2\)
- Contestar
-
\(y = 8\)
Ejercicio\(\PageIndex{15}\)
([link])\(m + 8 = -1\).
- Contestar
-
\(m = -9\)
Ejercicio\(\PageIndex{16}\)
([link])\(-5 + a = -4\).
- Contestar
-
\(a = 1\)
Ejercicio\(\PageIndex{17}\)
([link])\(4x = 104\).
- Contestar
-
\(x = 26\)
Ejercicio\(\PageIndex{18}\)
([link])\(6y + 3 = -21\).
- Contestar
-
\(y = -4\)
Ejercicio\(\PageIndex{19}\)
([link])\(\dfrac{5m}{6} = \dfrac{10}{3}\).
- Contestar
-
\(m = 4\)
Ejercicio\(\PageIndex{20}\)
([link])\(\dfrac{7y}{8} + \dfrac{1}{4} = \dfrac{-13}{4}\).
- Contestar
-
\(y = -4\)
Ejercicio\(\PageIndex{21}\)
([link])\(6x + 5 = 4x - 11\).
- Contestar
-
\(x = -8\)
Ejercicio\(\PageIndex{22}\)
([link])\(4y - 8 - 6y = 3y + 1\).
- Contestar
-
\(y = \dfrac{-9}{5}\)
Ejercicio\(\PageIndex{23}\)
([link] y [link]) Tres enteros pares consecutivos se suman a -36. ¿Qué son?
- Contestar
-
-14, -12, -10
Ejercicio\(\PageIndex{24}\)
([link] y [link]) El perímetro de un rectángulo es de 38 pies. Encuentra el largo y ancho del rectángulo si el largo es 5 pies menos que tres veces el ancho.
- Contestar
-
\(l = 13\),\(w = 6\)
Ejercicio\(\PageIndex{25}\)
([link] y [link]) Cuatro números se suman a -2. El segundo número es tres más del doble del negativo del primer número. El tercer número es seis menos que el primer número. El cuarto número es once menos que dos veces el primer número. Encuentra los números.
- Contestar
-
6, -9, 0, 1