3.4.4E: Teorema Factor y Teorema del Resto (Ejercicios)
- Page ID
- 116468
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)sección 3.4 ejercicio
Utilice la división polinómica larga para realizar la división indicada.
1. \(\left(4x^{2} +3x-1\right)\div (x-3)\)
2. \(\left(2x^{3} -x+1\right)\div \left(x^{2} +x+1\right)\)
3. \(\left(5x^{4} -3x^{3} +2x^{2} -1\right)\div \left(x^{2} +4\right)\)
4. \(\left(-x^{5} +7x^{3} -x\right)\div \left(x^{3} -x^{2} +1\right)\)
5. \(\left(9x^{3} +5\right)\div \left(2x-3\right)\)
6. \(\left(4x^{2} -x-23\right)\div \left(x^{2} -1\right)\)
Utilizar división sintética para realizar la división indicada.
7. \(\left(3x^{2} -2x+1\right)\div \left(x-1\right)\)
8. \(\left(x^{2} -5\right)\div \left(x-5\right)\)
9. \(\left(3-4x-2x^{2} \right)\div \left(x+1\right)\)
10. \(\left(4x^{2} -5x+3\right)\div \left(x+3\right)\)
11. \(\left(x^{3} +8\right)\div \left(x+2\right)\)
12. \(\left(4x^{3} +2x-3\right)\div \left(x-3\right)\)
13. \(\left(18x^{2} -15x-25\right)\div \left(x-\dfrac{5}{3} \right)\)
14. \(\left(4x^{2} -1\right)\div \left(x-\dfrac{1}{2} \right)\)
15. \(\left(2x^{3} +x^{2} +2x+1\right)\div \left(x+\dfrac{1}{2} \right)\)
16. \(\left(3x^{3} -x+4\right)\div \left(x-\dfrac{2}{3} \right)\)
17. \(\left(2x^{3} -3x+1\right)\div \left(x-\dfrac{1}{2} \right)\)
18. \(\left(4x^{4} -12x^{3} +13x^{2} -12x+9\right)\div \left(x-\dfrac{3}{2} \right)\)
19. \(\left(x^{4} -6x^{2} +9\right)\div \left(x-\sqrt{3} \right)\)
20. \(\left(x^{6} -6x^{4} +12x^{2} -8\right)\div \left(x+\sqrt{2} \right)\)
A continuación se le da un polinomio y uno de sus ceros. Utilice las técnicas de esta sección para encontrar el resto de los ceros reales y factizar el polinomio.
21. \(x^{3} -6x^{2} +11x-6,\; \; c=1\)
22. \(x^{3} -24x^{2} +192x-512,\; \; c=8\)
23. \(3x^{3} +4x^{2} -x-2,\; \; c=\dfrac{2}{3}\)
24. \(2x^{3} -3x^{2} -11x+6,\; \; c=\dfrac{1}{2}\)
25. \(x^{3} +2x^{2} -3x-6,\; \; c=-2\)
26. \(2x^{3} -x^{2} -10x+5,\; \; c=\dfrac{1}{2}\)
27. \(4x^{4} -28x^{3} +61x^{2} -42x+9\),\(c=\dfrac{1}{2}\) es un cero de multiplicidad 2
28. \(x^{5} +2x^{4} -12x^{3} -38x^{2} -37x-12\),\(c=-1\) es un cero de multiplicidad 3
- Responder
-
1. \(4x^2 + 3x - 1 = (x - 3) (4x + 15) + 44\)
3. \(5x^4 - 3x^3 + 2x^2 - 1 = (x^2 + 4) (5x^2 - 3x - 18) + (12x + 71)\)
5. \(9x^3 + 5 = (2x - 3) (\dfrac{9}{2}x^2 + \dfrac{27}{4} x + \dfrac{81}{8}) + \dfrac{283}{8}\)
7. \((3x^2 - 2x + 1) = (x - 1)(3x + 1) +2\)
9. \((3 - 4x - 2x^2) = (x + 1) (-2x - 2) + 5\)
11. \((x^3 + 8) = (x + 2)(x^2 - 2x + 4) + 0\)
13. \((18x^2 - 15x - 25) = (x - \dfrac{5}{3})(18x + 15) + 0\)
15. \((2x^3 +x^2 + 2x + 1) = (x + \dfrac{1}{2})(2x^2 + 2) + 0\)
17. \((2x^3 - 3x + 1) = (x - \dfrac{1}{2})(2x^2 + x - \dfrac{5}{2}) - \dfrac{1}{4}\)
19. \((x^4 - 6x^2 + 9) = (x - \sqrt{3}) (x^3 + \sqrt{3}x^2 - 3x - 3\sqrt{3}) + 0\)
21. \(x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2) (x - 3)\)
23. \(3x^3 + 4x^2 - x - 2 = 3(x - \dfrac{2}{3})(x + 1)^2\)
25. \(x^3 + 2x^2 - 3x - 6 = (x + 2) (x + \sqrt{3}) (x - \sqrt{3})\)
27. \(4x^4 - 28x^3 + 61x^2 - 42x + 9 = 4(x - \dfrac{1}{2})^2 (x - 3)^2\)