Loading [MathJax]/jax/output/HTML-CSS/jax.js
Saltar al contenido principal
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
LibreTexts Español

6.3: Ejercicios

( \newcommand{\kernel}{\mathrm{null}\,}\)

Ejercicio6.3.1

Encuentref+g,fg,fg para las funciones a continuación. Declarar su dominio.

  1. f(x)=x2+6x, yg(x)=3x5
  2. f(x)=x3+5, yg(x)=5x2+7
  3. f(x)=3x+7x, yg(x)=2x2+5x
  4. f(x)=1x+2, yg(x)=5xx+2
  5. f(x)=x3, yg(x)=2x3
  6. f(x)=x2+2x+5, yg(x)=3x6
  7. f(x)=x2+3x, yg(x)=2x2+3x+4
Contestar
  1. (f+g)(x)=x2+9x5con dominioDf+g=R,(fg)(x)=x2+3x+5 con dominioDfg=R,(fg)(x)=3x3+13x230x con dominioDfg=R
  2. (f+g)(x)=x3+5x2+12,Df+g=R,(fg)(x)=x35x22,Dfg=R,(fg)(x)=5x5+7x3+25x2+35,Dfg=R
  3. (f+g)(x)=2x2+3x+12x,Df+g=[0,),(fg)(x)=2x2+3x+2x,Dfg=[0,),(fg)(x)=6x3+14x2x+15xx+35x,Dfg=[0,)
  4. (f+g)(x)=5x+1x+2,Df+g=R{2},(fg)(x)=15xx+2,Dfg=R{2},(fg)(x)=5x(x+2)2,Dfg=R{2}
  5. (f+g)(x)=3x3,Df+g=[3,),(fg)(x)=x3,Dfg=[3,),(fg)(x)=2(x3)2=2(x3),Dfg=[3,)
  6. (f+g)(x)=x2+5x1,Df+g=R,(fg)(x)=x2x+11,Dfg=R,(fg)(x)=3x3+3x30,Dfg=R
  7. (f+g)(x)=3x2+6x+4,Df+g=R,(fg)(x)=x24,Dfg=R,(fg)(x)=2x4+9x3+13x2+12x,Dfg=R

Ejercicio6.3.2

Encuentrefg, ygf para las funciones a continuación. Declarar su dominio.

  1. f(x)=3x+6, yg(x)=2x8
  2. f(x)=x+2, yg(x)=x25x+4
  3. f(x)=1x5, yg(x)=x2x+3
  4. f(x)=x+6, yg(x)=2x+5
  5. f(x)=x2+8x33, yg(x)=x
Contestar
  1. (fg)(x)=3x+62x8con dominioDfg=R{4},(gf)(x)=2x83x+6 con dominioDgf=R{2}
  2. (fg)(x)=x+2x25x+4=x+2(x4)(x1),Dfg=R{1,4},(gf)(x)=x25x+4x+2,Dgf=R{2}
  3. (fg)(x)=x+3(x5)(x2),Dfg=R{3,2,5},(gf)(x)=(x5)(x2)x+3,Dgf=R{3,5}
  4. (fg)(x)=x+62x+5,Dfg=[6,52)(52,),(gf)(x)=2x+5x+6,Dgf=(6,)
  5. (fg)(x)=x2+8x33x,Dfg=(0,),(gf)(x)=xx2+8x33,Dgf=[0,3)(3,)

Ejercicio6.3.3

Dejarf(x)=2x3 yg(x)=3x2+4x. Encuentra las siguientes composiciones

  1. f(g(2))
  2. g(f(2))
  3. f(f(5))
  4. f(5g(3))
  5. g(f(2)2)
  6. f(f(3)+g(3))
  7. g(f(2+x))
  8. f(f(x))
  9. f(f(3)3g(2))
  10. f(f(f(2)))
  11. f(x+h)
  12. g(x+h)
Contestar
  1. 37
  2. 7
  3. 11
  4. 147
  5. 1
  6. 81
  7. 12x2+20x+7
  8. 4x9
  9. 141
  10. 5
  11. 2x+2h3
  12. 3x2+6xh+3h2+4x+4h

Ejercicio6.3.4

Encuentra la composición(fg)(x) para las funciones:

  1. f(x)=3x5, yg(x)=2x+3
  2. f(x)=x2+2, yg(x)=x+3
  3. f(x)=x23x+2, yg(x)=2x+1
  4. f(x)=x2+x+3, yg(x)=x2+2x
  5. f(x)=2x+4, yg(x)=x+h
  6. f(x)=x2+4x+3, yg(x)=x+h
Contestar
  1. (fg)(x)=6x+4
  2. (fg)(x)=x2+6x+11
  3. (fg)(x)=4x22x
  4. (fg)(x)=x4+4x3+4x2+x2+2x+3
  5. (fg)(x)=2x+h+4
  6. (fg)(x)=x2+2xh+h2+4x+4h+3

Ejercicio6.3.5

Encuentra las composiciones

(fg)(x),(gf)(x),(ff)(x),(gg)(x)

para las siguientes funciones:

  1. f(x)=2x+4, yg(x)=x5
  2. f(x)=x+3, yg(x)=x22x
  3. f(x)=2x2x6, yg(x)=3x+2
  4. f(x)=1x+3, yg(x)=1x3
  5. f(x)=(2x7)2, yg(x)=x+72
Contestar
  1. (fg)(x)=2x6,(gf)(x)=2x1,(ff)(x)=4x+12,(gg)(x)=x10
  2. (fg)(x)=x22x+3,(gf)(x)=x2+4x+3,(ff)(x)=x+6,(gg)(x)=x44x3+2x2+4x
  3. (fg)(x)=6x23x+2,(gf)(x)=6x23x16,(ff)(x)=8x48x348x2+25x+72,(gg)(x)=33x+2+2
  4. (fg)(x)=x,(gf)(x)=x,(ff)(x)=x+33x+10,(gg)(x)=10x313x
  5. (fg)(x)=x,(gf)(x)=x,(ff)(x)=(2(2x7)27)2o expandido en grados decrecientes:(ff)(x)=64x4896x3+4592x210192x+8281,(gg)(x)=x+72+72=14+14+2x4

Ejercicio6.3.6

Dejarf yg ser las funciones definidas por la siguiente tabla. Completa la tabla que figura a continuación.

\ [\ begin {array} {|c||c|c|c|c|c|c|c|c|}
\ hline x & 1 & 2 & 3 & 4 & 5 & 6 & 7\
\ hline\ hline\ hline f (x) & 4 & 5 & 7 & 0 & -2 & 6 & 4
\\ hline g (x) & 6 & -8 & 5 & 2 & 9 & 11 & 2\\
\ hline f (x) +3 & & & & & & & &\
\ hline 4 g (x) +5 & & & & & & & & & &
\ hline g (x) -2 f (x) & & & & & & & & & & & & & &
\ hline f (x+3) & & & & & & &\
\ hline
\ end {array}\ nonumber\]

Contestar

\ (\ begin {array} {|c||c|c|c|c|c|c|c|c|}
\ hline x & 1 & 2 & 3 & 4 & 5 & 6 & 7\
\ hline\ hline\ hline f (x) & 4 & 5 & 7 & 0 & -2 & 6 & 4
\\ hline g (x) & 6 & -8 & 5 & 2 & 9 & 11 & 2\\
\ hline f (x) +3 & 7 & 8 & 10 & 3 & 1 & 9 & 7\
\ hline 4 g (x) +5 & 29 & -28 & 25 & 13 & 41 & 49 & 13\
\ hline g (x) -2 f (x) & -2 & -18 & -9 & 2 & 13 & -1 y -6\\
\ hline f (x+3) & 0 & -2 & 6 & 4 &\ text {undef.} &\ text {undef.} &\ text {undef.}\\
\ hline
\ end {array}\ nonumber\)

Tenga en cuenta, sin embargo, que la tabla completa paray=f(x+3) viene dada por:

\ (\ begin {array} {|c||c|c|c|c|c|c|c|c|}
\ hline x & -2 & -1 & 0 & 1 & 2 & 3 & 4\
\ hline\ hline\ hline f (x+3) & 4 & 5 & 7 & 0 & -2 & 6 & 4\
\ hline
\ end {array}\ nonumber\)

Ejercicio6.3.7

Dejarf yg ser las funciones definidas por la siguiente tabla. Completa la tabla componiendo las funciones dadas.

\ [\ begin {array} {|c||c|c|c|c|c|c|}
\ hline x & 1 & 2 & 3 & 4 & 5 & 6\
\ hline\ hline\ hline f (x) & 3 & 1 & 2 & 5 & 6 & 3
\\ hline g (x) & 5 & 2 & 6 & 1 & 2 & 4\
\ hline (g\ circ f) (x) y & & & &\
\ hline (f\ circ g) (x) & & & & & & &\
\ hline (f\ circ f) (x) & & & & & & &\
\ hline (g\ circ g) (x) & & & & &\
\ hline
\\ final {matriz}\ nonumber\]

Contestar

\ (\ begin {array} {|c||c|c|c|c|c|c|}
\ hline x & 1 & 2 & 3 & 4 & 5 & 6\
\ hline\ hline\ hline f (x) & 3 & 1 & 2 & 5 & 6 & 3
\\ hline g (x) & 5 & 2 & 6 & 1 & 2 & 4\
\ hline (g\ circ f) (x) y 6 y 5 y 2 y 2 y 4 y 6\
\ hline (f\ circ g) (x) y 6 y 1 y 3 y 3 y 1 y 5\
\ hline (f\ circ f) (x) y 2 y 3 y 1 y 6 y 3 y 2\
\ hline (g\ circ g) (x) y 2 y 2 y 4 & 5 y 2 y 1\\
\ hline
\ end {array}\ nonumber\)

Ejercicio6.3.8

Dejarf yg ser las funciones definidas por la siguiente tabla. Completa la tabla componiendo las funciones dadas.

\ [\ begin {array} {|c||c|c|c|c|c|c|c|c|}
\ hline x & 0 & 2 & 4 & 6 & 8 & 10 & 12\
\ hline\ hline\ hline f (x) & 4 & 8 & 5 & 6 & 12 & -1 & 10\
\ hline g (x) & 10 & 2 & 0 & 0 & 6 & 7 & 2 & 8\\
\ hline (g\ circ f) (x) & & & & & & &\
\ hline (f\ circ g) (x) & & & & & & & &
\\ hline (f\ circ f) (x) & & & & & &\
\ hline (g\ circ g) (x) & & & & & ; &\\
\ hline
\ end {array}\ nonumber\]

Contestar

\ (\ begin {array} {|c||c|c|c|c|c|c|c|c|}
\ hline x & 0 & 2 & 4 & 6 & 8 & 10 & 10 & 12\
\ hline\ hline\ hline f (x) & 4 & 8 & 5 & 6 & 12 & -1 & 10
\\ hline g (x) & 10 & 2 & 0 & 6 & 7 & 2 & 8 \
\ hline (g\ circ f) (x) & 0 & 7 &\ text {undef.} & -6 & 8 &\ text {undef.} & 2\\
\ hline (f\ circ g) (x) & -1 & 8 & 4 &\ text {undef.} &\ text {undef.} & 8 & 12
\\ hline (f\ circ f) (x) y 5 amp; 12 &\ text {undef.} & 6 & 10 &\ text {undef.} & -1\\
\ hline (g\ circ g) (x) & 2 & 2 & 10 &\ text {undef.} &\ text {undef.} & 2 & 7\
\ hline
\ end {array}\ nonumber\)


This page titled 6.3: Ejercicios is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?