Saltar al contenido principal
LibreTexts Español

7.3: Ejercicios

  • Page ID
    117800
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Ejercicio\(\PageIndex{1}\)

    Utilice la prueba de línea horizontal para determinar si la función es uno a uno.

    1. clipboard_e00dcca2039e18db8fefb626195322c1a.png
    2. clipboard_e41a01f3ceb2fa0e71d04b9a4c5220ae3.png
    3. \(f(x)=x^2+2x+5\)
    4. \(f(x)=x^2-14 x+29\)
    5. \(f(x)=x^3-5x^2\)
    6. \(f(x)=\dfrac{x^2}{x^2-3}\)
    7. \(f(x)=\sqrt{x+2}\)
    8. \(f(x)=\sqrt{|x+2|}\)
    Contestar
    1. no (es decir: la función no es uno-a-uno)
    2. si
    3. no
    4. no
    5. no
    6. no
    7. si
    8. no

    Ejercicio\(\PageIndex{2}\)

    Encuentra la inversa de la función\(f\) y comprueba tu solución.

    1. \(f(x)=4x+9\)
    2. \(f(x)=-8x-3\)
    3. \(f(x)=\sqrt{x+8}\)
    4. \(f(x)=\sqrt{3x+7}\)
    5. \(f(x)=6\cdot \sqrt{-x-2}\)
    6. \(f(x)=x^3\)
    7. \(f(x)=(2x+5)^3\)
    8. \(f(x)=2\cdot x^3+5\)
    9. \(f(x)=\dfrac{1}{x}\)
    10. \(f(x)=\dfrac{1}{x-1}\)
    11. \(f(x)=\dfrac{1}{\sqrt{x-2}}\)
    12. \(f(x)=\dfrac{-5}{4-x}\)
    13. \(f(x)=\dfrac{x}{x+2}\)
    14. \(f(x)=\dfrac{3x}{x-6}\)
    15. \(f(x)=\dfrac{x+2}{x+3}\)
    16. \(f(x)=\dfrac{7-x}{x-5}\)
    17. \(f\)dado por la tabla:\ (\ begin {array} {|c||c|c|c|c|c|c|c|}
      \ hline x & 2 & 4 & 6 & 8 & 10 & 12\
      \ hline\ hline\ hline f (x) & 3 & 7 & 1 & 8 & 5 & 2\
      \ hline
      \ end {array}\)
    Contestar
    1. \(f^{-1}(x)=\dfrac{x-9}{4}\)
    2. \(f^{-1}(x)=-\dfrac{x+3}{8}\)
    3. \(f^{-1}(x)=x^{2}-8\)
    4. \(f^{-1}(x)=\dfrac{x^{2}-7}{3}\)
    5. \(f^{-1}(x)=-\left(\dfrac{x}{6}\right)^{2}-2=\dfrac{-x^{2}-72}{36}\)
    6. \(f^{-1}(x)=\sqrt[3]{x}\)
    7. \(f^{-1}(x)=\dfrac{\sqrt[3]{x}-5}{2}\)
    8. \(f^{-1}(x)=\sqrt[3]{\dfrac{x-5}{2}}\)
    9. \(f^{-1}(x)=\dfrac{1}{x}+1=\dfrac{1+x}{x}\)
    10. \(f^{-1}(x)=\left(\dfrac{1}{x}\right)^{2}+2=\dfrac{1+2 x^{2}}{x^{2}}\)
    11. \(f^{-1}(x)=\dfrac{5}{y}+4=\dfrac{5+4 y}{y}\)
    12. \(f^{-1}(x)=\dfrac{5}{y}+4=\dfrac{5+4 y}{y}\)
    13. \(f^{-1}(x)=\dfrac{2 x}{1-x}\)
    14. \(f^{-1}(x)=\dfrac{6 x}{x-3}\)
    15. \(f^{-1}(x)=\dfrac{2-3 x}{x-1}\)
    16. \(f^{-1}(x)=\dfrac{5 x+7}{x+1}\)
    17. \ (\ begin {array} {|c||c|c|c|c|c|c|c|}
      \ hline x & 3 & 7 & 1 & 8 & 5 & 2\
      \ hline\ hline\ hline f^ {-1} (x) & 2 & 4 & 6 & 8 & 10 & 12\
      \ hline
      \ end {array}\)

    Ejercicio\(\PageIndex{3}\)

    Restringir el dominio de\(f\) la función de tal manera que\(f\) se convierta en una función uno a uno. Encuentra la inversa de\(f\) con el dominio restringido.

    1. \(f(x)=x^2\)
    2. \(f(x)=(x+5)^2+1\)
    3. \(f(x)=|x|\)
    4. \(f(x)=|x-4|-2\)
    5. \(f(x)=\dfrac{1}{x^2}\)
    6. \(f(x)=\dfrac{-3}{(x+7)^2}\)
    7. \(f(x)=x^4\)
    8. \(f(x)=\dfrac{(x-3)^4}{10}\)
    Contestar
    1. restringir al dominio\(D=[0, \infty)\) da la inversa\(f^{-1}(x)=\sqrt{x}\)
    2. restringir al dominio\(D=[-5, \infty)\) da la inversa\(f^{-1}(x)=\sqrt{x-1}-5\)
    3. restringir al dominio\(D=[0, \infty)\) da la inversa\(f^{-1}(x)=x\)
    4. restringir al dominio\(D=[4, \infty)\) da la inversa\(f^{-1}(x)=x+6\)
    5. restringir al dominio\(D=[0, \infty)\) da la inversa\(f^{-1}(x)=\sqrt{\dfrac{1}{x}}\)
    6. restringir al dominio\(D=[-7, \infty)\) da la inversa\(f^{-1}(x)=\sqrt{-\dfrac{3}{x}}-7\)
    7. restringir al dominio\(D=[0, \infty)\) da la inversa\(f^{-1}(x)=\sqrt[4]{x}\)
    8. restringir al dominio\(D=[3, \infty)\) da la inversa\(f^{-1}(x)=3+\sqrt[4]{10 x}\)

    Ejercicio\(\PageIndex{4}\)

    Determinar si las siguientes funciones\(f\) y\(g\) son inversas entre sí.

    1. \(f(x)=x+3, \quad g(x)=x-3\),
    2. \(f(x)=-x-4, \quad g(x)=4-x\),
    3. \(f(x)=2x+3, \quad g(x)=x-\dfrac{3}{2}\),
    4. \(f(x)=6x-1, \quad g(x)=\dfrac{x+1}{6}\),
    5. \(f(x)=x^3-5, \quad g(x)= 5+\sqrt[3]{x}\),
    6. \(f(x)=\dfrac{1}{x-2}, \quad g(x)=\dfrac{1}{x}+2\).
    Contestar
    1. sí (es decir: las funciones f y g son inversas entre sí)
    2. no
    3. no
    4. si
    5. no
    6. si

    Ejercicio\(\PageIndex{5}\)

    Dibuja la gráfica de la inversa de la función dada a continuación.

    1. clipboard_e69f5fbec9b18afa60ce97d8ba4527d2f.png
    2. clipboard_e85679e1eed9dfd1931c682ec9ba575e4.png
    3. clipboard_e7d09259a7bff75260981a24ab80377f7.png
    4. \(f(x)=\sqrt{x}\)
    5. \(f(x)=x^3-4\)
    6. \(f(x)=2x-4\)
    7. \(f(x)=2^x\)
    8. \(f(x)=\dfrac{1}{x-2}\)para\(x>2\)
    9. \(f(x)=\dfrac{1}{x-2}\)para\(x<2\)
    Contestar
    1. clipboard_e5bd00924d99bc517e3bba566ce83928e.png
    2. clipboard_e0b24b66918fef93e58f7ed6943572efd.png
    3. clipboard_e9fd9e5fafae2fc1117afd331cb759f09.png
    4. clipboard_e5c7558ce7229316f34c32afad0639acf.png
    5. clipboard_ee561d70a10bbd68c45d025d7df21c4c2.png
    6. clipboard_ef1e04538ab49cb5b5e99f8ee7d75fc3f.png
    7. clipboard_ed333d3b0157ca15d4191e03782d7118d.png
    8. clipboard_e8144ade3afe05c7c97a70b1813458b86.png
    9. clipboard_e59e8e7f62c8759d878096556fde3f2e3.png

    This page titled 7.3: Ejercicios is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.