Saltar al contenido principal
LibreTexts Español

21.3: Derivando la Ecuación I de Boltzmann

  • Page ID
    74112
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    En las Secciones 20-10 y 20-14, desarrollamos la relación entre la entropía del sistema y las probabilidades de un microestado\(\rho \left({\epsilon }_i\right)\), y un nivel de energía\(P_i=g_i\rho \left({\epsilon }_i\right)\), en nuestro modelo microscópico. ENCONTRAMOS

    \[\begin{align*} S &=-Nk\sum^{\infty }_{i=1}{P_i}{ \ln \rho \left({\epsilon }_i\right)\ } \\[4pt] &=-Nk\sum^{\infty }_{i=1}{g_i\rho \left({\epsilon }_i\right)}{ \ln \rho \left({\epsilon }_i\right)\ } \end{align*}\]

    Para un sistema aislado en equilibrio, la entropía debe ser máxima, y por lo tanto

    \[-\sum^{\infty }_{i=1}{g_i\rho \left({\epsilon }_i\right)}{ \ln \rho \left({\epsilon }_i\right)} \label{maxentropy}\]

    debe ser un máximo. Podemos usar el método de Lagrange para encontrar la dependencia de la probabilidad de estado cuantista de su energía. El\(\rho \left({\epsilon }_i\right)\) debe ser tal como para maximizar la entropía (Ecuación\ ref {maxentropía}) sujeto a las restricciones

    \[1=\sum^{\infty }_{i=1}{P_i}=\sum^{\infty }_{i=1}{g_i\rho \left({\epsilon }_i\right)}\]

    y

    \[\left\langle \epsilon \right\rangle =\sum^{\infty }_{i=1}{P_i{\epsilon }_i}=\sum^{\infty }_{i=1}{g_i{\varepsilon }_i\rho \left({\epsilon }_i\right)}\]

    donde\(\left\langle \epsilon \right\rangle\) está el valor esperado de la energía de una molécula. La función mnemotécnica se convierte

    \[F_{mn}=-\sum^{\infty }_{i=1}{g_i\rho \left({\epsilon }_i\right)}{ \ln \rho \left({\epsilon }_i\right)\ }+{\alpha }^*\left(1-\sum^{\infty }_{i=1}{g_i\rho \left({\epsilon }_i\right)}\right)+\beta \left(\left\langle \epsilon \right\rangle -\sum^{\infty }_{i=1}{g_i{\varepsilon }_i\rho \left({\epsilon }_i\right)}\right)\]

    Equiparando la derivada parcial con respecto\(\rho \left({\epsilon }_i\right)\) a cero,\[\frac{\partial F_{mn}}{\partial \rho \left({\epsilon }_i\right)}=-g_i{ \ln \rho \left({\epsilon }_i\right)\ }-g_i-{\alpha }^*g_i-\beta g_i{\epsilon }_i=0\]

    para que

    \[\rho \left({\epsilon }_i\right)={\mathrm{exp} \left(-{\alpha }^*-1\right)\ }{\mathrm{exp} \left(-\beta {\epsilon }_i\right)\ }\]

    Desde

    \[1=\sum^{\infty }_{i=1}{P_i}=\sum^{\infty }_{i=1}{g_i\rho \left({\epsilon }_i\right)}\]

    el argumento que usamos en la Sección 21.1 vuelve a conducir a la función de partición,\(z\), y la ecuación de Boltzmann

    \[P_i=g_i\rho \left({\epsilon }_i\right)=z^{-1}g_i\ \mathrm{exp}\left(-\beta {\epsilon }_i\right)\]


    This page titled 21.3: Derivando la Ecuación I de Boltzmann is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.