Buscar
- Filtrar resultados
- Ubicación
- Clasificación
- Incluir datos adjuntos
- https://espanol.libretexts.org/Quimica/Qu%C3%ADmica_F%C3%ADsica_y_Te%C3%B3rica/Libro%3A_M%C3%A9todos_matem%C3%A1ticos_en_qu%C3%ADmica_(Levitus)/14%3A_Vectores/14.02%3A_El_Producto_EscalarEl producto escalar de los vectores u y v, también conocido como el producto punto o producto interno, se define como (observe el punto entre los símbolos que representan los vectores) uv=|u||v|cosθ, ...El producto escalar de los vectores u y v, también conocido como el producto punto o producto interno, se define como (observe el punto entre los símbolos que representan los vectores) uv=|u||v|cosθ, donde θ es el ángulo entre los vectores. Observe que el producto punto es cero si los dos vectores son perpendiculares entre sí, y es igual al producto de sus valores absolutos si son paralelos.
- https://espanol.libretexts.org/Fisica/Mecanica_Clasica/Mec%C3%A1nica_Cl%C3%A1sica_(Dourmashkin)/13%3A_Energ%C3%ADa%2C_Energ%C3%ADa_Cin%C3%A9tica_y_Trabajo/13.08%3A_El_trabajo_y_el_producto_escalarEl producto escalar→A⋅→B de los vectores→A y→B se define como producto de la magni...El producto escalar→A⋅→B de los vectores→A y→B se define como producto de la magnitud de los vectores→A y→B con el coseno del ángulo θ entre los dos vectores:
- https://espanol.libretexts.org/Fisica/Mecanica_Clasica/Principios_Variacionales_en_Mec%C3%A1nica_Cl%C3%A1sica_(Cline)/19%3A_M%C3%A9todos_matem%C3%A1ticos_para_la_mec%C3%A1nica_cl%C3%A1sica/19.03%3A_Ap%C3%A9ndice_-_%C3%81lgebra_vectorialProductos escalares, vectoriales, tensores de operadores lineales.
- https://espanol.libretexts.org/Matematicas/Algebra_Abstracta_y_Geometrica/%C3%81lgebra_Geom%C3%A9trica_Aplicada_(Tisza)/01%3A_Preliminares_algebraicos/1.04%3A_%C2%BFC%C3%B3mo_multiplicar_vectores%3F_Consideraciones_heur%C3%ADsticasLa teoría de cuaterniones de Sir William Rowan Hamilton se adapta a los problemas de rotación en espacios tridimensionales y cuatridimensionales, mientras que Ausdehnungslehre (Teoría de las Extension...La teoría de cuaterniones de Sir William Rowan Hamilton se adapta a los problemas de rotación en espacios tridimensionales y cuatridimensionales, mientras que Ausdehnungslehre (Teoría de las Extensiones) de Hermann Grassman trata de volúmenes en espacios de un número arbitrario de dimensiones.
- https://espanol.libretexts.org/Matematicas/Libro%3A_Calculo_(OpenStax)/12%3A_Vectores_en_el_Espacio/12.03%3A_El_Producto_DotEn esta sección, desarrollamos una operación llamada el producto punto, que nos permite calcular el trabajo en el caso en que el vector de fuerza y el vector de movimiento tengan diferentes direccione...En esta sección, desarrollamos una operación llamada el producto punto, que nos permite calcular el trabajo en el caso en que el vector de fuerza y el vector de movimiento tengan diferentes direcciones. El producto punto esencialmente nos dice cuánto del vector de fuerza se aplica en la dirección del vector de movimiento. El producto punto también puede ayudarnos a medir el ángulo formado por un par de vectores y la posición de un vector con respecto a los ejes de coordenadas.
- https://espanol.libretexts.org/Matematicas/Algebra_lineal/Un_Primer_Curso_de_%C3%81lgebra_Lineal_(Kuttler)/04%3A_R/4.07%3A_El_producto_DotHay dos formas de multiplicar vectores que son de gran importancia en las aplicaciones. El primero de ellos se llama el producto punto. Cuando tomamos el punto producto de vectores, el resultado es un...Hay dos formas de multiplicar vectores que son de gran importancia en las aplicaciones. El primero de ellos se llama el producto punto. Cuando tomamos el punto producto de vectores, el resultado es un escalar. Por esta razón, el producto punto también se llama el producto escalar y en ocasiones el producto interno.
- https://espanol.libretexts.org/Matematicas/Precalculo_y_Trigonometria/Libro%3A_Prec%C3%A1lculo_(Sstitz-Zeager)/11%3A_Aplicaciones_de_la_trigonometr%C3%ADa/11.09%3A_El_Producto_Dot_y_Proyecci%C3%B3nAnteriormente, aprendimos cómo sumar y restar vectores y cómo multiplicar vectores por escalares. En esta sección, definimos un producto de vectores.