Saltar al contenido principal
LibreTexts Español

8.6E: Ejercicios

  • Page ID
    51748
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    La práctica hace a la perfección

    Ejercicio SET A: dividir raíces cuadradas

    En los siguientes ejercicios, simplifique.

    1. a. \(\dfrac{\sqrt{128}}{\sqrt{72}}\quad\) b. \(\dfrac{\sqrt[3]{128}}{\sqrt[3]{54}}\)

    2. a. \(\dfrac{\sqrt{48}}{\sqrt{75}}\quad\) b. \(\dfrac{\sqrt[3]{81}}{\sqrt[3]{24}}\)

    3. a.\(\dfrac{\sqrt{200 m^{5}}}{\sqrt{98 m}}\quad\) b. \(\dfrac{\sqrt[3]{54 y^{2}}}{\sqrt[3]{2 y^{5}}}\)

    4. a. \(\dfrac{\sqrt{108 n^{7}}}{\sqrt{243 n^{3}}}\quad\) b. \(\dfrac{\sqrt[3]{54 y}}{\sqrt[3]{16 y^{4}}}\)

    5. a. \(\dfrac{\sqrt{75 r^{3}}}{\sqrt{108 r^{7}}}\quad\) b. \(\dfrac{\sqrt[3]{24 x^{7}}}{\sqrt[3]{81 x^{4}}}\)

    6. a. \(\dfrac{\sqrt{196 q}}{\sqrt{484 q^{5}}}\quad\) b. \(\dfrac{\sqrt[3]{16 m^{4}}}{\sqrt[3]{54 m}}\)

    7. a. \(\dfrac{\sqrt{108 p^{5} q^{2}}}{\sqrt{3 p^{3} q^{6}}}\quad\) b. \(\dfrac{\sqrt[3]{-16 a^{4} b^{-2}}}{\sqrt[3]{2 a^{-2} b}}\)

    8. a. \(\dfrac{\sqrt{98 r s^{10}}}{\sqrt{2 r^{3} s^{4}}}\quad\) b. \(\dfrac{\sqrt[3]{-375 y^{4} z^{2}}}{\sqrt[3]{3 y^{-2} z^{4}}}\)

    9. a. \(\dfrac{\sqrt{320 m n^{-5}}}{\sqrt{45 m^{-7} n^{3}}}\quad\) b. \(\dfrac{\sqrt[3]{16 x^{4} y^{-2}}}{\sqrt[3]{-54 x^{-2} y^{4}}}\)

    10. a. \(\dfrac{\sqrt{810 c^{-3} d^{7}}}{\sqrt{1000 c d}}\quad\) b. \(\dfrac{\sqrt[3]{24 a^{7} b^{-1}}}{\sqrt[3]{-81 a^{-2} b^{2}}}\)

    11. \(\dfrac{\sqrt{56 x^{5} y^{4}}}{\sqrt{2 x y^{3}}}\)

    12. \(\dfrac{\sqrt{72 a^{3} b^{6}}}{\sqrt{3 a b^{3}}}\)

    13. \(\dfrac{\sqrt[3]{48 a^{3} b^{6}}}{\sqrt[3]{3 a^{-1} b^{3}}}\)

    14. \(\dfrac{\sqrt[3]{162 x^{-3} y^{6}}}{\sqrt[3]{2 x^{3} y^{-2}}}\)

    Contestar

    1. a. \(\dfrac{4}{3}\) b. \(\dfrac{4}{3}\)

    3. a. \(\dfrac{10 m^{2}}{7}\) b. \(\dfrac{3}{y}\)

    5. a. \(\dfrac{5}{6 r^{2}}\) b. \(\dfrac{2x}{3}\)

    7. a. \(\dfrac{6 p}{q^{2}}\) b. \(-\dfrac{2 a^{2}}{b}\)

    9. a. \(\dfrac{8 m^{4}}{3 n^{4}}\) b. \(-\dfrac{2 x^{2}}{3 y^{2}}\)

    11. \(4 x^{4} \sqrt{7 y}\)

    13. \(2 a b \sqrt[3]{2 a}\)

    Ejercicio SET B: Racionalizar un denominador de un término

    En los siguientes ejercicios, racionalizar el denominador.

    15. a. \(\dfrac{10}{\sqrt{6}}\quad\) b. \(\sqrt{\dfrac{4}{27}}\quad\) c. \(\dfrac{10}{\sqrt{5 x}}\)

    16. a. \(\dfrac{8}{\sqrt{3}}\quad\) b. \(\sqrt{\dfrac{7}{40}}\quad\) c. \(\dfrac{8}{\sqrt{2 y}}\)

    17. a. \(\dfrac{6}{\sqrt{7}}\quad\) b. \(\sqrt{\dfrac{8}{45}}\quad\) c. \(\dfrac{12}{\sqrt{3 p}}\)

    18. a. \(\dfrac{4}{\sqrt{5}}\quad\) b. \(\sqrt{\dfrac{27}{80}}\quad\) c. \(\dfrac{18}{\sqrt{6 q}}\)

    19. a. \(\dfrac{1}{\sqrt[3]{5}}\quad\) b. \(\sqrt[3]{\dfrac{5}{24}}\quad\) c. \(\dfrac{4}{\sqrt[3]{36 a}}\)

    20. a. \(\dfrac{1}{\sqrt[3]{3}}\quad\) b. \(\sqrt[3]{\dfrac{5}{32}}\quad\) c. \(\dfrac{7}{\sqrt[3]{49 b}}\)

    21. a. \(\dfrac{1}{\sqrt[3]{11}}\quad\) b. \(\sqrt[3]{\dfrac{7}{54}}\quad\) c. \(\dfrac{3}{\sqrt[3]{3 x^{2}}}\)

    22. a. \(\dfrac{1}{\sqrt[3]{13}}\quad\) b. \(\sqrt[3]{\dfrac{3}{128}}\quad\) c. \(\dfrac{3}{\sqrt[3]{6 y^{2}}}\)

    23. a. \(\dfrac{1}{\sqrt[4]{7}}\quad\) b. \(\sqrt[4]{\dfrac{5}{32}}\quad\) c. \(\dfrac{4}{\sqrt[4]{4 x^{2}}}\)

    24. a. \(\dfrac{1}{\sqrt[4]{4}}\quad\) b. \(\sqrt[4]{\dfrac{9}{32}}\quad\) c. \(\dfrac{6}{\sqrt[4]{9 x^{3}}}\)

    25. a. \(\dfrac{1}{\sqrt[4]{9}}\quad\) b. \(\sqrt[4]{\dfrac{25}{128}}\quad\) c. \(\dfrac{6}{\sqrt[4]{27 a}}\)

    26. a. \(\dfrac{1}{\sqrt[4]{8}}\quad\) b. \(\sqrt[4]{\dfrac{27}{128}}\quad\) c. \(\dfrac{16}{\sqrt[4]{64 b^{2}}}\)

    Contestar

    15. a. \(\dfrac{5 \sqrt{6}}{3}\) b. \(\dfrac{2 \sqrt{3}}{9}\) c. \(\dfrac{2 \sqrt{5 x}}{x}\)

    17. a. \(\dfrac{6 \sqrt{7}}{7}\) b. \(\dfrac{2 \sqrt{10}}{15}\) c. \(\dfrac{4 \sqrt{3 p}}{p}\)

    19. a. \(\dfrac{\sqrt[3]{25}}{5}\) b. \(\dfrac{\sqrt[3]{45}}{6}\) c. \(\dfrac{2 \sqrt[3]{6 a^{2}}}{3 a}\)

    21. a. \(\dfrac{\sqrt[3]{121}}{11}\) b. \(\dfrac{\sqrt[3]{28}}{6}\) c. \(\dfrac{\sqrt[3]{9 x}}{x}\)

    23. a. \(\dfrac{\sqrt[4]{343}}{7}\) b. \(\dfrac{\sqrt[4]{40}}{4}\) c. \(\dfrac{2 \sqrt[4]{4 x^{2}}}{x}\)

    25. a. \(\dfrac{\sqrt[4]{9}}{3}\) b. \(\dfrac{\sqrt[4]{50}}{4}\) c. \(\dfrac{2 \sqrt[4]{3 a^{2}}}{a}\)

    Ejercicio SET C: Racionalizar un denominador de dos términos

    En los siguientes ejercicios, simplifique.

    27. \(\dfrac{8}{1-\sqrt{5}}\)

    28. \(\dfrac{7}{2-\sqrt{6}}\)

    29. \(\dfrac{6}{3-\sqrt{7}}\)

    30. \(\dfrac{5}{4-\sqrt{11}}\)

    31. \(\dfrac{\sqrt{3}}{\sqrt{m}-\sqrt{5}}\)

    32. \(\dfrac{\sqrt{5}}{\sqrt{n}-\sqrt{7}}\)

    33. \(\dfrac{\sqrt{2}}{\sqrt{x}-\sqrt{6}}\)

    34. \(\dfrac{\sqrt{7}}{\sqrt{y}+\sqrt{3}}\)

    35. \(\dfrac{\sqrt{r}+\sqrt{5}}{\sqrt{r}-\sqrt{5}}\)

    36. \(\dfrac{\sqrt{s}-\sqrt{6}}{\sqrt{s}+\sqrt{6}}\)

    37. \(\dfrac{\sqrt{x}+\sqrt{8}}{\sqrt{x}-\sqrt{8}}\)

    38. \(\dfrac{\sqrt{m}-\sqrt{3}}{\sqrt{m}+\sqrt{3}}\)

    Contestar

    27. \(-2(1+\sqrt{5})\)

    29. \(3(3+\sqrt{7})\)

    31. \(\dfrac{\sqrt{3}(\sqrt{m}+\sqrt{5})}{m-5}\)

    33. \(\dfrac{\sqrt{2}(\sqrt{x}+\sqrt{6})}{x-6}\)

    35. \(\dfrac{(\sqrt{r}+\sqrt{5})^{2}}{r-5}\)

    37. \(\dfrac{(\sqrt{x}+2 \sqrt{2})^{2}}{x-8}\)

    Ejercicio SET D: ejercicios de escritura
      1. Simplifica \(\sqrt{\dfrac{27}{3}}\) y explica todos tus pasos.
      2. Simplifica \(\sqrt{\dfrac{27}{5}}\) y explica todos tus pasos.
      3. ¿Por qué son diferentes los dos métodos de simplificación de las raíces cuadradas?
    1. Explica lo que se entiende por la palabra racionalizar en la frase, “racionalizar un denominador”.
    2. Explicar por qué multiplicar \(\sqrt{2x}-3\) por su conjugado resulta en una epxressión sin radicales.
    3. Explicar por qué multiplicar \(\dfrac{7}{\sqrt[3]{x}}\) por \(\dfrac{\sqrt[3]{x}}{\sqrt[3]{x}}\) no racionaliza el denominador.
    Contestar

    1. Las respuestas variarán

    3. Las respuestas variarán

    Autocomprobación

    a. Después de completar los ejercicios, utilice esta lista de verificación para evaluar su dominio de los objetivos de esta sección.

    Esta tabla tiene 4 filas y 4 columnas. La primera fila es una fila de encabezado y etiqueta cada columna. El encabezado de la primera columna es “i can…â€, el segundo es “confidently€, el tercero es “With algo de ayudaâ€, y el cuarto es “No, I don’ t get itâ€. Debajo de la primera columna están las frases “divide expresiones radicales.â€, “racionalizar un denominador de un termino€, y “racionalizar un denominador de dos termino€. Las otras columnas se dejan en blanco para que el alumno pueda indicar su nivel de maestría para cada tema.
    Figura 8.5.63

    b. Después de mirar la lista de verificación, ¿cree que está bien preparado para la siguiente sección? ¿Por qué o por qué no?


    This page titled 8.6E: Ejercicios is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.