Saltar al contenido principal
LibreTexts Español

7.5E: Ejercicios

  • Page ID
    112723
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Resolver ecuaciones racionales

    En los siguientes ejercicios, resuelve cada ecuación racional.

    1. \(\dfrac{1}{a}+\dfrac{2}{5}=\dfrac{1}{2}\)

    Contestar

    \(a=10\)

    2. \(\dfrac{6}{3}-\dfrac{2}{d}=\dfrac{4}{9}\)

    3. \(\dfrac{4}{5}+\dfrac{1}{4}=\dfrac{2}{v}\)

    Contestar

    \(v=\dfrac{40}{21}\)

    4. \(\dfrac{3}{8}+\dfrac{2}{y}=\dfrac{1}{4}\)

    5. \(1-\dfrac{2}{m}=\dfrac{8}{m^{2}}\)

    Contestar

    \(m=-2,\; m=4\)

    6. \(1+\dfrac{4}{n}=\dfrac{21}{n^{2}}\)

    7. \(1+\dfrac{9}{p}=\dfrac{-20}{p^{2}}\)

    Contestar

    \(p=-5, \; p=-4\)

    8. \(1-\dfrac{7}{q}=\dfrac{-6}{q^{2}}\)

    9. \(\dfrac{5}{3 v-2}=\dfrac{7}{4 v}\)

    Contestar

    \(v=14\)

    10. \(\dfrac{8}{2 w+1}=\dfrac{3}{w}\)

    11. \(\dfrac{3}{x+4}+\dfrac{7}{x-4}=\dfrac{8}{x^{2}-16}\)

    Contestar

    \(x=-\dfrac{4}{5}\)

    12. \(\dfrac{5}{y-9}+\dfrac{1}{y+9}=\dfrac{18}{y^{2}-81}\)

    13. \(\dfrac{8}{z-10}-\dfrac{7}{z+10}=\dfrac{5}{z^{2}-100}\)

    Contestar

    \(z=-145\)

    14. \(\dfrac{9}{a+11}-\dfrac{6}{a-11}=\dfrac{6}{a^{2}-121}\)

    15. \(\dfrac{-10}{q-2}-\dfrac{7}{q+4}=1\)

    Contestar

    \(q=-18, \; q=-1\)

    16. \(\dfrac{2}{s+7}-\dfrac{3}{s-3}=1\)

    17. \(\dfrac{v-10}{v^{2}-5 v+4}=\dfrac{3}{v-1}-\dfrac{6}{v-4}\)

    Contestar

    no hay solución

    18. \(\dfrac{w+8}{w^{2}-11 w+28}=\dfrac{5}{w-7}+\dfrac{2}{w-4}\)

    19. \(\dfrac{x-10}{x^{2}+8 x+12}=\dfrac{3}{x+2}+\dfrac{4}{x+6}\)

    Contestar

    no hay solución

    20. \(\dfrac{y-5}{y^{2}-4 y-5}=\dfrac{1}{y+1}+\dfrac{1}{y-5}\)

    21. \(\dfrac{b+3}{3 b}+\dfrac{b}{24}=\dfrac{1}{b}\)

    Contestar

    \(b=-8\)

    22. \(\dfrac{c+3}{12 c}+\dfrac{c}{36}=\dfrac{1}{4 c}\)

    23. \(\dfrac{d}{d+3}=\dfrac{18}{d^{2}-9}+4\)

    Contestar

    \(d=2\)

    24. \(\dfrac{m}{m+5}=\dfrac{50}{m^{2}-25}+6\)

    25. \(\dfrac{n}{n+2}-3=\dfrac{8}{n^{2}-4}\)

    Contestar

    \(m=1\)

    26. \(\dfrac{p}{p+7}-8=\dfrac{98}{p^{2}-49}\)

    27. \(\dfrac{q}{3 q-9}-\dfrac{3}{4 q+12}=\dfrac{7 q^{2}+6 q+63}{24 q^{2}-216}\)

    Contestar

    no hay solución

    28. \(\dfrac{r}{3 r-15}-\dfrac{1}{4 r+20}=\dfrac{3 r^{2}+17 r+40}{12 r^{2}-300}\)

    29. \(\dfrac{s}{2 s+6}-\dfrac{2}{5 s+5}=\dfrac{5 s^{2}-3 s-7}{10 s^{2}+40 s+30}\)

    Contestar

    \(s=\dfrac{5}{4}\)

    30. \(\dfrac{t}{6 t-12}-\dfrac{5}{2 t+10}=\dfrac{t^{2}-23 t+70}{12 t^{2}+36 t-120}\)

    31. \(\dfrac{2}{x^{2}+2 x-8}-\dfrac{1}{x^{2}+9 x+20}=\dfrac{4}{x^{2}+3 x-10}\)

    Contestar

    \(x=-\dfrac{4}{3}\)

    32. \(\dfrac{5}{x^{2}+4 x+3}+\dfrac{2}{x^{2}+x-6}=\dfrac{3}{x^{2}-x-2}\)

    33. \(\dfrac{3}{x^{2}-5 x-6}+\dfrac{3}{x^{2}-7 x+6}=\dfrac{6}{x^{2}-1}\)

    Contestar

    no hay solución

    34. \(\dfrac{2}{x^{2}+2 x-3}+\dfrac{3}{x^{2}+4 x+3}=\dfrac{6}{x^{2}-1}\)

    Resolver ecuaciones racionales que involucran funciones

    35. Para la función racional,\(f(x)=\dfrac{x-2}{x^{2}+6 x+8}\):

    1. Encuentra el dominio de la función
    2. Resolver\(f(x)=5\)
    3. Encuentra los puntos en la gráfica en este valor de función
    Contestar
    1. El dominio es todo números reales excepto\(x \neq-2\) y\(x \neq-4\)
    2. \(x=-3, x=-\dfrac{14}{5}\)
    3. \((-3,5),\left(-\dfrac{14}{5}, 5\right)\)

    36. Para la función racional,\(f(x)=\dfrac{x+1}{x^{2}-2 x-3}\):

    1. Encuentra el dominio de la función
    2. Resolver\(f(x)=1\)
    3. Encuentra los puntos en la gráfica en este valor de función

    37. Para la función racional,\(f(x)=\dfrac{2-x}{x^{2}-7 x+10}\):

    1. Encuentra el dominio de la función
    2. Resolver\(f(x)=2\)
    3. Encuentra los puntos en la gráfica en este valor de función
    Contestar
    1. El dominio es todo números reales excepto\(x \neq 2\) y\(x \neq 5\)
    2. \(x=\dfrac{9}{2}\)
    3. \(\left(\dfrac{9}{2}, 2\right)\)

    38. Para la función racional,\(f(x)=\dfrac{5-x}{x^{2}+5 x+6}\):

    1. Encuentra el dominio de la función
    2. Resolver\(f(x)=3\)
    3. Encuentra los puntos en la gráfica en este valor de función

    Resolver una ecuación racional para una variable específica

    En los siguientes ejercicios, resuelve:

    39. \(\dfrac{c}{r}=2 \pi \text { for } r\)

    Contestar

    \(r=\dfrac{C}{2 \pi}\)

    40. \(\dfrac{I}{r}=P \text { for } r\)

    41. \(\dfrac{v+3}{w-1}=\dfrac{1}{2} \text { for } w\)

    Contestar

    \(w=2 v+7\)

    42. \(\dfrac{x+5}{2-y}=\dfrac{4}{3} \text { for } y\)

    43. \(a=\dfrac{b+3}{c-2} \text { for } c\)

    Contestar

    \(c=\dfrac{b+3+2 a}{a}\)

    44. \(m=\dfrac{n}{2-n} \text { for } n\)

    45. \(\dfrac{1}{p}+\dfrac{2}{q}=4 \text { for } p\)

    Contestar

    \(p=\dfrac{q}{4 q-2}\)

    46. \(\dfrac{3}{s}+\dfrac{1}{t}=2 \text { for } s\)

    47. \(\dfrac{2}{v}+\dfrac{1}{5}=\dfrac{3}{w} \text { for } w\)

    Contestar

    \(w=\dfrac{15 v}{10+v}\)

    48. \(\dfrac{6}{x}+\dfrac{2}{3}=\dfrac{1}{y} \text { for } y\)

    49. \(\dfrac{m+3}{n-2}=\dfrac{4}{5} \text { for } n\)

    Contestar

    \(n=\dfrac{5 m+23}{4}\)

    50. \(r=\dfrac{s}{3-t} \text { for } t\)

    51. \(\dfrac{E}{c}=m^{2} \text { for } c\)

    Contestar

    \(c=\dfrac{E}{m^{2}}\)

    52. \(\dfrac{R}{T}=W \text { for } T\)

    53. \(\dfrac{3}{x}-\dfrac{5}{y}=\dfrac{1}{4} \text { for } y\)

    Contestar

    \(y=\dfrac{20 x}{12-x}\)

    54. \(c=\dfrac{2}{a}+\dfrac{b}{5} \text { for } a\)

    Ejercicios de escritura

    55. Tu compañero de clase está teniendo problemas en esta sección. Anota los pasos que usarías para explicar cómo resolver una ecuación racional.

    Contestar

    Las respuestas variarán.

    56. Alek piensa que la ecuación\(\dfrac{y}{y+6}=\dfrac{72}{y^{2}-36}+4\) tiene dos soluciones,\(y=-6\) y\(y=4\). Explique por qué Alek se equivoca.


    This page titled 7.5E: Ejercicios is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.