6.7: Exponentes y polinomios- Respuestas a los ejercicios de tarea
- Page ID
- 117340
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Reglas y propiedades del exponente
- \(4^9\)
- \(12m^2n\)
- \(3^{12}\)
- \(4u^6v^4\)
- \(4^2\)
- \(m^2\)
- \(4x^{10}y^{14}\)
- \(x^2y^6\)
- \(\dfrac{y^3}{512x^24}\)
- \(2xy\)
- \(x^4y^{16}z^4\)
- \(4^7\)
- \(12x^3\)
- \(4^{12}\)
- \(x^3y^3\)
- \(3^4\)
- \(\dfrac{xy^3}{4}\)
- \(8u^{18}v^6\)
- \(\dfrac{4a^2}{3}\)
- \(\dfrac{x^2y^5}{2}\)
- \(2y^2\)
- \(256q^4r^8\)
- \(b^11\)
- \(\dfrac{x^5y^{16}}{32}\)
- \(\dfrac{1}{x^3y^2}\)
- \(\dfrac{u^2}{12v^5}\)
- \(16a^{12}b^{12}\)
- \(16m^4n^6\)
- \(\dfrac{u}{2v}\)
- \(2x^4y^5\)
- \(\dfrac{1}{h^3j^6k}\)
- \(\dfrac{x^2}{y^4z^4}\)
- \(2x^3y^2\)
- \(\dfrac{32}{m^5n^{15}}\)
- \(\dfrac{x^5y^8}{4}\)
- \(\dfrac{y}{2x^4}\)
- \(\dfrac{x^4y^8}{4}\)
- \(\dfrac{2x}{y^3}\)
- \(4y^5\)
- \(\dfrac{a^3}{2b^3}\)
- \(\dfrac{x^{30}x^6}{16y^4}\)
- \(\dfrac{mn^7}{p^5}\)
Notación científica
- \(8.85\times 10^2\)
- \(3.9\times 10^{-2}\)
- \(1.09\times 10^0\)
- \(870,000\)
- \(2\)
- \(50,000\)
- \(1.4\times 10^{-3}\)
- \(1.56\times 10^{-3}\)
- \(5.541\times 10^{-5}\)
- \(2.887\times 10^{-6}\)
- \(1.196\times 10^{-2}\)
- \(1.715\times 10^{14}\)
- \(4.6\times 10^2\)
- \(1.034\times 10^6\)
- \(5.018\times 10^6\)
- \(9.836\times 10^{-1}\)
- \(1.177\times 10^{-16}\)
- \(2.91\times 10^{-2}\)
- \(2.52\times 10^3\)
- \(3.939\times 10^9\)
- \(1.372\times 10^3\)
Sumar y restar expresiones polinómicas
- \(3\)
- \(-10\)
- \(-7\)
- \(5\)
- \(12\)
- \(3p^4-3p\)
- \(-n^3+10n^2\)
- \(5n^4+5n\)
- \(13p^3\)
- \(3n^3+8\)
- \(2b^4+2b+10\)
- \(-5x^4+14x^3-1\)
- \(7a^4-3a^2-2a\)
- \(p^2+4p-6\)
- \(5b^3+12b^2+5\)
- \(n^3-5n^2+3\)
- \(-12n^4+n^2+7\)
- \(r^4-3r^3+7r^2+1\)
- \(9n^4+2n^3+6n^2\)
- \(-3b^4+13b^3-7b^2-11b+19\)
- \(2x^4-x^3-4x+2\)
Multiplicar expresiones polinomiales
- \(6p-42\)
- \(20m^5+20m^4\)
- \(56b^2-19b-15\)
- \(15v^2-26v+8\)
- \(30x^2-14xy-4y^2\)
- \(56x^2+61xy+15y^2\)
- \(12n^3-20n^2+38n-20\)
- \(48n^4-16n^3+64n^2-6n+36\)
- \(18x^2-15x-12\)
- \(7x^2-49x+70\)
- \(32k^2+16k\)
- \(12r-21\)
- \(4r^2+40r+64\)
- \(6a^2-44a-32\)
- \(16u^2+10uv-21v^2\)
- \(5a^2-7ab-24b^2\)
- \(8b^3-4b^2-4b-12\)
- \(14a^4+30a^3-13a^2-12a+3\)
- \(10x^2-55x+60\)
- \(40x^2-10x-5\)
- \(4x^3+25x^2+25x\)
- \(-2n^3-15n^2-25n\)
Productos Especiales
- \(x^2-64\)
- \(1-49n^2\)
- \(16x^2-64\)
- \(16m^2-64n^2\)
- \(a^2+10a+25\)
- \(p^2+14p+49\)
- \(25m^2-80m+64\)
- \(4x^2+8xy+4y^2\)
- \(4+20x+25x^2\)
- \(n^2-25\)
- \(a^2-16\)
- \(64m^2-25\)
- \(b^2-49\)
- \(9y^2-9x^2\)
- \(v^2+8v+16\)
- \(49k^2-98k+49\)
- \(9a^2+18ab+9b^2\)
- \(64x^2+80xy+25y^2\)
- \(64n^2-49\)
- \(49x^2+98x+49\)
División Polinomial
- \(5x+\dfrac{1}{4}+\dfrac{1}{2x}\)
- \(2x^3+4x^2+\dfrac{x}{2}\)
- \(x-10+\dfrac{9}{x+8}\)
- \(v+8-\dfrac{9}{v-10}\)
- \(5p+4+\dfrac{3}{9p+4}\)
- \(r-1+\dfrac{2}{4r+3}\)
- \(9b+5-\dfrac{5}{3b+8}\)
- \(a^2+8a-7-\dfrac{6}{a+7}\)
- \(3n^2-9n-10-\dfrac{8}{n+6}\)
- \(p^2+4p-1+\dfrac{4}{9p+9}\)
- \(6n^2-3n-3+\dfrac{5}{2n+3}\)
- \(\dfrac{5x^3}{9}+5x^2+\dfrac{4x}{9}\)
- \(\dfrac{5p^3}{4}+4p^2+4p\)
- \(r+6+\dfrac{1}{r-9}\)
- \(x-3-\dfrac{5}{x+7}\)
- \(8k-9-\dfrac{1}{3k-1}\)
- \(m+4+\dfrac{1}{m-1}\)
- \(v+3-\dfrac{5}{3v-9}\)
- \(8k^2-2k-4+\dfrac{5}{k-8}\)
- \(k^2-3k-9-\dfrac{5}{k-1}\)
- \(m^2-8m+7-\dfrac{7}{8m+7}\)
- \(6b^2+b+9+\dfrac{3}{4b-7}\)
- \(\dfrac{1}{3}n-\dfrac{5}{9}+\dfrac{\dfrac{70}{9}}{3n+5}\)
- \(x^3+7x^2-7x+5-\dfrac{2}{x-3}\)
- \(x^3+3x^2+5x+3-\dfrac{8}{x+2}\)
- \(x^3-5x^2-x-3-\dfrac{5}{x+1}\)
- \(x^3+8x^2-5x-5-\dfrac{4}{x+2}\)
- \(x^3-2x^2-7x-8+\dfrac{3}{x-2}\)