Saltar al contenido principal
LibreTexts Español

2.1: Vectores

  • Page ID
    113033
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Objetivos
    1. Aprende a agregar y escalar vectores\(\mathbb{R}^n\text{,}\) tanto en álgebraica como geométricamente.
    2. Comprender las combinaciones lineales geométricamente.
    3. Imágenes: suma vectorial, resta vectorial, combinaciones lineales.
    4. Palabras de vocabulario: vector, combinación lineal.

    Vectores en\(\mathbb{R}^n\)

    Hemos estado dibujando puntos en\(\mathbb{R}^n\) como puntos en la línea, plano, espacio, etc. también podemos dibujarlos como flechas. Como tenemos en mente dos interpretaciones geométricas, ahora discutimos la relación entre los dos puntos de vista.

    Definición\(\PageIndex{1}\): Points and Vectors

    Nuevamente, un punto adentro\(\mathbb{R}^n\) se dibuja como un punto.

    clipboard_e643f4e62b4cabb83cf91a741e45fbdc3.png

    Figura\(\PageIndex{1}\)

    Un vector es un punto en\(\mathbb{R}^n\text{,}\) dibujado como una flecha.

    clipboard_ea5a46a77dc7d7b182dc2185152a24e02.png

    Figura\(\PageIndex{2}\)

    La diferencia es puramente psicológica: los puntos y los vectores son ambos solo listas de números.

    Ejemplo\(\PageIndex{1}\): Interactive: A vector in \(\mathbb{R}^3\text{,}\) by coordinates

    clipboard_eb7694dfda516cb1c0448ffea14bd25a8.png

    Figura\(\PageIndex{3}\). A vector in \(\mathbb{R}^3\text{,}\) and its coordinates. Drag the arrow head and tail.

    When we think of a point in \(\mathbb{R}^n\) as a vector, we will usually write it vertically, like a matrix with one column: 

    \[v=\left(\begin{array}{c}1\\3\end{array}\right).\nonumber\]

    We will also write \(0\) for the zero vector.

    Why make the distinction between points and vectors? A vector need not start at the origin: it can be located anywhere! In other words, an arrow is determined by its length and its direction, not by its location. For instance, these arrows all represent the vector \(\color{green}{\left(\begin{array}{c}1\\2\end{array}\right)}\)

    clipboard_e0e07cd8f67777d5423c1a67701d7ea57.png

    Figure \(\PageIndex{4}\)

    Note \(\PageIndex{1}\)

    Unless otherwise specified, we will assume that all vectors start at the origin.

    Vectors makes sense in the real world: many physical quantities, such as velocity, are represented as vectors. But it makes more sense to think of the velocity of a car as being located at the car.

    Remark

    Some authors use boldface letters to represent vectors, as in “\(\mathbf v\)”, or use arrows, as in “\(\vec v\)”. As it is usually clear from context if a letter represents a vector, we do not decorate vectors in this way.

    Note \(\PageIndex{2}\)

    Another way to think about a vector is as a difference between two points, or the arrow from one point to another. For instance, \({1\choose 2}\) is the arrow from \((1,1)\) to \((2,3)\)

    clipboard_e10407a172c3f5deccfc760b88b65bef9.png

    Figure \(\PageIndex{5}\)

    Vector Algebra and Geometry

    Here we learn how to add vectors together and how to multiply vectors by numbers, both algebraically and geometrically.

    Definition \(\PageIndex{2}\): Vector addition and scalar multiplication
    • We can add two vectors together:
      \[\left(\begin{array}{c}a\\b\\c\end{array}\right) +\left(\begin{array}{c}x\\y\\z\end{array}\right)=\left(\begin{array}{c}a+x \\ b+y\\c+z\end{array}\right).\nonumber\]
    • We can multiply, or scale, a vector by a real number \(c\text{:}\)
      \[\color{red}{c}\color{black}{\left(\begin{array}{c}x\\y\\z\end{array}\right)} =\left(\begin{array}{c}\color{red}{c}\color{black}{\:\cdot\: x} \\ \color{red}{c}\color{black}{\:\cdot\: y}\\ \color{red}{c}\color{black}{\:\cdot\: z}\end{array}\right).\nonumber\]
      We call \(c\)scalar to distinguish it from a vector. If \(v\) is a vector and \(c\) is a scalar, then \(cv\) is called a scalar multiple of \(v\).

    Addition and scalar multiplication work in the same way for vectors of length \(n\).

    Example \(\PageIndex{2}\)

    \[\left(\begin{array}{c}1\\2\\3\end{array}\right) +\left(\begin{array}{c}4\\5\\6\end{array}\right)=\left(\begin{array}{c}5\\7\\9\end{array}\right)\quad\text{and}\quad -2\left(\begin{array}{c}1\\2\\3\end{array}\right)=\left(\begin{array}{c}-2\\-4\\-6\end{array}\right).\nonumber\]

    The Parallelogram Law for Vector Addition

    Geometrically, the sum of two vectors \(v,w\) is obtained as follows: place the tail of \(w\) at the head of \(v\). Then \(v+w\) is the vector whose tail is the tail of \(v\) and whose head is the head of \(w\). Doing this both ways creates a parallelogram. For example,

    \[\color{blue}{\left(\begin{array}{c}1\\3\end{array}\right)}\color{black}{+}\color{green}{\left(\begin{array}{c}4\\2\end{array}\right)}\color{black}{=\left(\begin{array}{c}5\\5\end{array}\right).}\nonumber\]

    Why? The width of \(v+w\) is the sum of the widths, and likewise with the heights.

    clipboard_e3ed246b366100a30aff8562a91dad907.png

    Figure \(\PageIndex{6}\)

    Example \(\PageIndex{3}\): Interactive: The parallelogram law for vector addition

    clipboard_e217dcdfe99c8a89319aec05a27c69fb9.png

    Figure \(\PageIndex{7}\): The parallelogram law for vector addition. Click and drag the heads of \(\) and \(w\).

    Vector Subtraction

    Geometrically, the difference of two vectors \(v,w\) is obtained as follows: place the tail of \(v\) and \(w\) at the same point. Then \(v-w\) is the vector from the head of \(w\) to the head of \(v\). For example,

    \[\color{blue}{\left(\begin{array}{c}1\\4\end{array}\right)}\color{black}{-}\color{green}{\left(\begin{array}{c}4\\2\end{array}\right)}\color{black}{=\left(\begin{array}{c}-3\\2\end{array}\right).}\nonumber\]

    Why? If you add \(v-w\) to \(w\text{,}\) you get \(v\).

    clipboard_ebf4b9e96402485a74fae03f01c8a218a.png

    Figure \(\PageIndex{8}\)

    Example \(\PageIndex{4}\): Interactive: Vector subtraction

    clipboard_ea9e23a5890ce1cc3af5d4060bda16700.png

    Figure \(\PageIndex{9}\): Vector subtraction. Click and drag the heads of \(v\) and \(w\).

    Scalar Multiplication

    A scalar multiple of a vector \(v\) has the same (or opposite) direction, but a different length. For instance, \(2v\) is the vector in the direction of \(v\) but twice as long, and \(-\frac 12v\) is the vector in the opposite direction of \(v\text{,}\) but half as long. Note that the set of all scalar multiples of a (nonzero) vector \(v\) is a line.

    clipboard_ee560418d8b0625e6bcbef4949cff9ead.png

    Figure \(\PageIndex{10}\)

    Example \(\PageIndex{5}\): Interactive: Scalar multiplication

    clipboard_e1570847a5a9cdc29aa1b7cdcedd63921.png

    Figura\(\PageIndex{11}\): Multiplicación escalar. Arrastre el control deslizante para cambiar el escalar.

    Combinaciones Lineales

    Podemos agregar y escalar vectores en la misma ecuación.

    Definición\(\PageIndex{3}\): Linear Combination

    \(c_1,c_2,\ldots,c_k\)Dejen ser escalares, y dejar que\(v_1,v_2,\ldots,v_k\) sean vectores adentro\(\mathbb{R}^n\). El vector en\(\mathbb{R}^n\)

    \[ c_1v_1 + c_2v_2 + \cdots + c_kv_k \nonumber \]

    se llama una combinación lineal de los vectores\(v_1,v_2,\ldots,v_k\text{,}\) con pesos o coeficientes\(c_1,c_2,\ldots,c_k\).

    Geométricamente, se obtiene una combinación lineal estirando/encogiendo los vectores\(v_1,v_2,\ldots,v_k\) según los coeficientes, luego sumarlos usando la ley del paralelogramo.

    Ejemplo\(\PageIndex{6}\)

    Dejar\(v_1 = {1\choose 2}\) y\(v_2 = {1\choose 0}\). Aquí hay algunas combinaciones lineales de\(v_1\) y\(v_2\text{,}\) dibujadas como puntos.

    clipboard_eab63b5ee71d12e6ec8257882ff44ccef.png

    Figura\(\PageIndex{12}\)

    Las ubicaciones de estos puntos se encuentran utilizando la ley de paralelogramo para la adición de vectores. Cualquier vector en el plano es una combinación lineal de\(v_1\) y\(v_2\text{,}\) con coeficientes adecuados.

    clipboard_e7443c57dfb67a61ea48c19d370cc3981.png

    Figura\(\PageIndex{13}\): Combinaciones lineales de dos vectores en\(\mathbb{R}^2\text{:}\) movimiento los deslizadores para cambiar los coeficientes de\(v_1\) y\(v_2\). Tenga en cuenta que cualquier vector en el plano se puede obtener como una combinación lineal de\(v_1,v_2\) con coeficientes adecuados.

    Ejemplo\(\PageIndex{7}\): Interactive: Linear combinations of three vectors

    clipboard_e5a6624d2aef4fefb8059434ae7eebcf2.png

    Figura\(\PageIndex{14}\): Linear combinations of three vectors: move the sliders to change the coefficients of \(v_1,v_2,v_3\). Note how the parallelogram law for addition of three vectors is more of a “parallepiped law”.
    Example \(\PageIndex{8}\): Linear Combinations of a Single Vector

    A linear combination of a single vector \(v = {1\choose 2}\) is just a scalar multiple of \(v\). So some examples include

    \[v=\left(\begin{array}{c}1\\2\end{array}\right),\quad \frac{3}{2}v=\left(\begin{array}{c}3/2\\3\end{array}\right),\quad -\frac{1}{2}v=\left(\begin{array}{c}-1/2\\-1\end{array}\right),\quad\cdots\nonumber\]

    The set of all linear combinations is the line through \(v\). (Unless \(v=0\text{,}\) in which case any scalar multiple of \(v\) is again \(0\).)

    clipboard_e1b43e4f06747aeb9bb007130c5754577.png

    Figure \(\PageIndex{15}\)

    Example \(\PageIndex{9}\): Linear Combinations of Collinear Vectors

    The set of all linear combinations of the vectors

    \[v_{1}=\left(\begin{array}{c}2\\2\end{array}\right)\quad\text{and}\quad v_{2}=\left(\begin{array}{c}-1\\-1\end{array}\right)\nonumber\]

    is the line containing both vectors.

    clipboard_efb3327ca99a6c0de7e8c4f162db7528c.png

    Figure \(\PageIndex{16}\)

    The difference between this and Example \(\PageIndex{6}\) is that both vectors lie on the same line. Hence any scalar multiples of \(v_1,v_2\) lie on that line, as does their sum.

    Example \(\PageIndex{10}\): Interactive: Linear combinations of two collinear vectors

    clipboard_e156a12d7eb8983cc4167e4e929af9028.png

    Figure \(\PageIndex{17}\): Linear combinations of two collinear vectors in \(\mathbb{R}^2\). Move the sliders to change the coefficients of \(v_1,v_2\). Note that there is no way to “escape” the line.

    This page titled 2.1: Vectores is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Dan Margalit & Joseph Rabinoff via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.