Saltar al contenido principal
LibreTexts Español

9.3: La diagonalización de una matriz simétrica

  • Page ID
    113133
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Al elegir una base ortogonal\(\{q_{j,k} | 1 \le k \le n_{j}\}\) para cada uno\(\mathbb{R}(P_{j})\) y recopilar los vectores base en

    \[Q_{j} = \begin{pmatrix} {q_{j,1}}&{q_{j,2}}&{\cdots}&{q_{j,n_{j}}} \end{pmatrix} \nonumber\]

    Nos encontramos con que

    \[P_{j} = Q_{j}Q_{j}^{T} = \sum_{k=1}^{n_{j}} q_{j,k}q_{j,k}^{T} \nonumber\]

    Como resultado, la representación espectral toma la forma

    \[B = \sum_{j=1}^{h} \lambda_{j}Q_{j}Q_{j}^{T} \nonumber\]

    \[\sum_{j=1}^{h} \lambda_{j} \sum_{k=1}^{n_{j}} q_{j,k}q_{j,k}^{T} \nonumber\]

    Esta es la representación espectral en quizás su vestimenta más detallada. ¡Existe, sin embargo, todavía otra forma! Es una forma que probablemente verá en futuros cursos de ingeniería y se logra ensamblando el\(Q_{j}\) en una sola matriz\(n-by-n\) ortonormal

    \[Q = \begin{pmatrix} {Q_{1}}&{\cdots}&{Q_{h}} \end{pmatrix} \nonumber\]

    Al tener columnas ortonormales se deduce que\(Q^{T}Q = I\). \(Q\)siendo cuadrado, se deduce además que\(Q^{T} = Q^{-1}\). Ahora,

    \[Bq_{j,k} = \lambda_{j}q_{j,k} \nonumber\]

    puede codificarse en términos de matriz a través de

    \[BQ = Q \Lambda \nonumber\]

    donde\(\Lambda\) está la matriz\(n-by-n\) diagonal cuyos primeros términos\(n_{1}\) diagonales son\(\lambda_{1}\), cuyos siguientes términos\(n_{2}\) diagonales son\(\lambda_{2}\), y así sucesivamente. Es decir, cada uno\(\lambda_{j}\) se repite según su multiplicidad. Multiplicando cada lado de la Ecuación, desde la derecha, por\(Q^{T}\) llegamos a

    \[B = Q \Lambda Q^{T} \nonumber\]

    Porque uno puede escribir con la misma facilidad

    \[Q^{T} BQ = \Lambda \nonumber\]

    uno dice que\(Q\) diagonaliza\(B\).

    Devolvamos el nuestro ejemplo

    \[B = \begin{pmatrix} {1}&{1}&{1}\\ {1}&{1}&{1}\\ {1}&{1}&{1} \end{pmatrix} \nonumber\]

    del último capítulo. Recordemos que el espacio propio asociado con\(\lambda_{1} = 0\)

    \[e_{1, 1} = \begin{pmatrix} {-1}\\ {1}\\ {0} \end{pmatrix} \nonumber\]

    y

    \[e_{1, 2} = \begin{pmatrix} {-1}\\ {0}\\ {1} \end{pmatrix} \nonumber\]

    para una base. A través de Gram-Schmidt podemos reemplazar esto con

    \[q_{1, 1} = \frac{1}{\sqrt{2}} \begin{pmatrix} {-1}\\ {1}\\ {0} \end{pmatrix} \nonumber\]

    \[q_{1, 2} = \frac{1}{\sqrt{6}} \begin{pmatrix} {-1}\\ {-1}\\ {2} \end{pmatrix} \nonumber\]

    Normalizando el vector asociado con el\(\lambda_{2} = 3\) que llegamos

    \[q_{2, 1} = \frac{1}{\sqrt{3}} \begin{pmatrix} {1}\\ {1}\\ {1} \end{pmatrix} \nonumber\]

    y por lo tanto

    \[Q = \begin{pmatrix} {q_{1}^{1}}&{q_{2}^{1}}&{q_{2}} \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} {-\sqrt{3}}&{-1}&{\sqrt{2}}\\ {\sqrt{3}}&{-1}&{\sqrt{2}}\\ {0}&{2}&{\sqrt{2}} \end{pmatrix} \nonumber\]

    y

    \[\begin{pmatrix} {0}&{0}&{0}\\ {0}&{0}&{0}\\ {0}&{0}&{3} \end{pmatrix} \nonumber\]


    This page titled 9.3: La diagonalización de una matriz simétrica is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source content that was edited to the style and standards of the LibreTexts platform.