Saltar al contenido principal
LibreTexts Español

4.E: Convergencia de Secuencias y Series (Ejercicios)

  • Page ID
    109474
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Q1

    Demuéstralo si\(\lim_{n \to \infty }s_n = s\) entonces\(\lim_{n \to \infty }\left |s_n \right | = \left |s \right |\). Demostrar que lo contrario es cierto cuando\(s = 0\), pero no necesariamente es cierto de lo contrario.

    Q2

    1. Dejar\((s_n)\) y\((t_n)\) ser secuencias con\(s_n ≤ t_n,∀n\). Supongamos\(\lim_{n \to \infty }s_n = s\) y\(\lim_{n \to \infty }t_n = t\). Demostrar\(s ≤ t\). [Pista: Asumir por contradicción, eso\(s > t\) y usar la definición de convergencia con\(ε = \(frac{s-t}{2}\) para producir un\(n\) con\(s_n > t_n\).]
    2. Demostrar que si una secuencia converge, entonces su límite es único. Es decir, probarlo si\(\lim_{n \to \infty }s_n = s\) y\(\lim_{n \to \infty }s_n = s\), entonces\(s = t\).

    Q3

    Demostrar que si la secuencia\((s_n)\) está acotada entonces\(\lim_{n \to \infty }\left (\frac{s_n}{n} \right ) = 0\).

    Q4

    1. Demostrar que si\(x \neq 1\), entonces\[1 + x + x^2 +\cdots + x^n = \frac{1 - x^{n+1}}{1-x}\]
    2. Utilice (a) para probar que si\(|x| < 1\), entonces\(\lim_{n \to \infty }\left ( \sum_{j=0}^{n} x^j \right ) = \frac{1}{1-x}\)

    Q5

    Demostrar\[\lim_{n \to \infty }\frac{a_0 + a_1n + a_2n^2 +\cdots + a_kn^k}{b_0 + b_1n + b_2n^2 +\cdots + b_kn^k} = \frac{a_k}{b_k}\]

    siempre\(b_k \neq 0\). [Observe que como un polinomio solo tiene finitamente muchas raíces, entonces el denominador será distinto de cero cuando n sea suficientemente grande.]

    Q6

    Demostrar que si\(\lim_{n \to \infty }s_n = s\) y\(\lim_{n \to \infty }(s_n - t_n) = 0\), entonces\(\lim_{n \to \infty }t_n = s\).

    Q7

    1. Demostrar que si\(\lim_{n \to \infty }s_n = s\) y\(s < t\), entonces existe un número real\(N\) tal que si\(n > N\) entonces\(s_n < t\).
    2. Demostrar que si\(\lim_{n \to \infty }s_n = s\) y\(r < s\), entonces existe un número real\(M\) tal que si\(n > M\) entonces\(r < s_n\).

    Q8

    Supongamos que\((s_n)\) es una secuencia de números positivos tal que\(\lim_{n \to \infty }\left ( \frac{s_{n+1}}{s_n} \right ) = L\)

    1. Demostrar que si\(L < 1\), entonces\(\lim_{n \to \infty }s_n = 0\). [Pista: Elija\(R\) con\(L < R < 1\). Por el problema anterior,\(∃\; N\) tal que si\(n > N\), entonces\(\frac{s_{n+1}}{s_n} < R\). \(n_0 > N\)Déjese arreglar y mostrar\(s_{n_0+k} < R^ks_{n_0}\). Concluya eso\(\lim_{k \to \infty }s_{n_0+k} = 0\) y deje\(n = n_0 + k\).]
    2. \(c\)Sea un número real positivo. Demostrar\[\lim_{n \to \infty }\left ( \frac{c^n}{n!} \right ) = 0\]

    This page titled 4.E: Convergencia de Secuencias y Series (Ejercicios) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Eugene Boman and Robert Rogers (OpenSUNY) via source content that was edited to the style and standards of the LibreTexts platform.