4.5: Ejemplos
- Page ID
- 109788
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)¿Por qué no podemos computar\(\int_{\gamma} \overline{z}\ dz\) usando el teorema fundamental?
Solución
Porque\(\overline{z}\) no tiene un antiderivado. También podemos ver esto al señalar que si\(\overline{z}\) tuviera un antiderivado, entonces su integral alrededor del círculo unitario tendría que ser 0. Pero, vimos en el Ejemplo 4.2.4 que este no es el caso.
Cálculo\(\int_{\gamma} \dfrac{1}{z}\ dz\) sobre cada uno de los siguientes contornos
- La línea de 1 a\(1 + i\).
- El círculo de radio 1 alrededor\(z = 3\).
- El círculo unitario.
Solución
Para las partes (i) y (ii) no hay problema en usar la antiderivada\(\log (z)\) porque estas curvas están contenidas en una región simplemente conectada que no contiene el origen.
(i)
\[\int_{\gamma} \dfrac{1}{z}\ dz = \log (1 + i) - \log (1) = \log (\sqrt{2}) + i \dfrac{\pi}{4}.\]
(ii) Como los puntos inicial y final son los mismos, obtenemos
\[\int_{\gamma} \dfrac{1}{z} \ dz = 0\]
(iii) Parametrizamos el círculo unitario por\(\gamma (\theta) = e^{i \theta}\) con\(0 \le \theta \le 2\pi\). Nosotros computamos\(\gamma '(\theta) = ie^{i \theta}\). Entonces la integral se convierte
\[\int_{\gamma} \dfrac{1}{z} \ dz = \int_{0}^{2\pi} \dfrac{1}{e^{i \theta}} ie^{i \theta} \ dt = \int_{0}^{2\pi} i \ dt = 2\pi i.\]
Observe que podríamos usar\(\log (z)\) si tuviéramos cuidado de dejar que el argumento aumentara\(2 \pi\) ya que giraba alrededor del origen una vez.
Compute\(\int_{\gamma} \dfrac{1}{z^2} \ dz\), donde\(\gamma\) está el círculo unitario de dos maneras.
- Utilizando el teorema fundamental.
- Directamente desde la definición.
Solución
(i) Dejar\(f(z) = -1/z\). Ya que\(f'(z) = 1/z^2\), el teorema fundamental dice
\[\int_{\gamma} \dfrac{1}{z^2} \ dz = \int_{\gamma} f'(z) \ dz = f(\text{endpint}) - f(\text{start point}) = 0.\]
Es igual a 0 porque los puntos inicial y final son los mismos.
(ii) Como es habitual, parametrizamos el círculo unitario como\(\gamma (\theta = e^{i \theta}\) con\(0 \le \theta \le 2\pi\). Entonces,\(\gamma '(\theta) = ie^{i \theta}\) y la integral se convierte
\[\int_{\gamma} \dfrac{1}{z^2} \ dz = \int_{0}^{2 \pi} \dfrac{1}{e^{2i \theta}} ie^{i \theta}\ d \theta = \int_{0}^{2\pi} i e^{-i \theta}\ d \theta = -e^{-i \theta} \vert_{0}^{2\pi} = 0.\]