Saltar al contenido principal
LibreTexts Español

C.5 El comportamiento de error del método secante

  • Page ID
    118164
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Dejar\(f(x)\) tener dos derivadas continuas, y dejar\(r\) ser cualquier solución de Ahora\(f(x)=0\text{.}\) vamos a obtener un manejo bastante bueno sobre el comportamiento de error del método secante cerca\(r\text{.}\)

    Denote por\(\tilde\varepsilon_n=x_n-r\) el error (firmado) en\(x_n\) y por\(\varepsilon_n=|x_n-r|\) el error (absoluto) en\(x_n\text{.}\) Entonces,\(x_n =r+\tilde\varepsilon_n\text{,}\) y, por (C.4.1),

    \ begin {align*}\ tilde\ varepsilon_ {n+1} & =\ frac {x_ {n-1} f (x_n) - x_n f (x_ {n-1})} {f (x_n) -f (x_ {n-1})} -r\\ & =\ frac {[r+\ tilde\ varepsilon_ {n-1}] f (x_n) - [r+\ tilde\ varepsilon_n] f (x_ {n-1})} {f (x_n) -f (x_ {n-1})} -r\\ & =\ frac {\ tilde\ varepsilon_ {n-1} f (x_n) -\ tilde\ varepsilon_ _n f (x_ {n-1})} {f (x_n) - f (x_ {n-1})}\ final {alinear*}

    Por la expansión de Taylor (3.4.32) y el teorema del valor medio (Teorema 2.13.5),

    \ begin {align*} f (x_n) & = f (r) + f' (r)\ tilde\ varepsilon_n +\ frac {1} {2} f "(c_1)\ tilde\ varepsilon_n^2\\ & = f' (r)\ tilde\ varepsilon_n +\ frac {1} {2} f" (c_1)\ tilde\ varepsilon_n^2\\ f (x_n) -f (x_ {n-1}) & = f' (c_2) [x_n-x_ {n-1}]\\ & = f' (c_2) [\ tilde\ varepsilon_n-\ tilde\ varepsilon_ {n-1}]\ end {alinear*}

    para algunos\(c_1\) entre\(r\) y\(x_n\) y algunos\(c_2\) entre\(x_{n-1}\) y\(x_n\text{.}\) Entonces, para\(x_{n-1}\) y\(x_n\) cerca\(r\text{,}\)\(c_1\) y\(c_2\) también tienen que estar cerca\(r\) y

    \ begin {align*} f (x_n) &\ approx f' (r)\ tilde\ varepsilon_n +\ frac {1} {2} f "(r)\ tilde\ varepsilon_n^2\\ f (x_ {n-1}) &\ approx f' (r)\ tilde\ varepsilon_ {n-1} +\ frac {1} {2} f" (r)\ tilde\ varepsilon_ {n-1} ^2\\ f (x_n) -f (x_ {n-1}) &\ approx f' (r) [\ tilde\ varepsilon_n-\ tilde\ varepsilon_ {n-1}]\ end {align*}

    y

    \ begin {alinear*}\ tilde\ varepsilon_ {n+1} & =\ frac {\ tilde\ varepsilon_ {n-1} f (x_n) -\ tilde\ varepsilon_n f (x_ {n-1})} {f (x_n) -f (x_ {n-1})}\\ &\ aprox {\ tilde\ varepsilon_ {n-1} [f' (r)\ tilde\ varepsilon_n +\ frac {1} {2} f "(r)\ tilde\ varepsilon_n^2] -\ tilde\ varepsilon_n [f' (r)\ tilde\ varepsilon_ {n-1} +\ frac {1} {2} f "(r)\ tilde\ varepsilon_ {n-1} ^2]} {f' (r) [\ tilde\ varepsilon_n-\ tilde\ varepsilon_ {n-1}]}\\ & =\ frac {\ frac {1} {2}\ tilde\ varepsilon_ {n-1}\ tilde\ varepsilon_nf" (r) [\ tilde\ varepsilon_n-\ tilde\ varepsilon_ {n-1}]} {f' (r) [\ tilde\ varepsilon_n-\ tilde\ varepsilon_ {n-1}]}\\ & =\ frac {f "(r)} {2f' (r)}\ tilde\ varepsilon_ {n-1}\ tilde\ varepsilon_n\ final {alinear*}

    Tomando valores absolutos, tenemos

    \[ \varepsilon_{n+1}\approx K \varepsilon_{n-1}\varepsilon_n\qquad \text{with }K = \left|\frac{f''(r)} {2f'(r)} \right| \tag{E7} \nonumber \]

    Hemos visto que el método de Newton obedece a una fórmula similar — (E3) dice que, cuando\(x_n\) está cerca el método de\(r\text{,}\) Newton obedece\(\varepsilon_{n+1}\approx K\varepsilon_n^2\text{,}\) también con\(K = \left|\frac{f''(r)} {2f'(r)} \right|\text{.}\) Como veremos ahora, el cambio de\(\varepsilon_n^2\text{,}\) in\(\varepsilon_{n+1}\approx K\varepsilon_n^2\text{,}\) a\(\varepsilon_{n-1}\varepsilon_n\text{,}\) in\(\varepsilon_{n+1}\approx K\varepsilon_{n-1}\varepsilon_n\text{,}\) sí tiene un impacto sustancial en el comportamiento de \(\varepsilon_n\)para grandes\(n\text{.}\)

    Para ver el\(n\) comportamiento grande, ahora iteramos (E7). Las fórmulas se verán más simples si multiplicamos (E7) por\(K\) y escribimos\(\delta_n=K\varepsilon_n\text{.}\) Entonces (E7) se convierte\(\delta_{n+1}\approx\delta_{n-1}\delta_n\) (y hemos eliminado\(K\)). Las primeras iteraciones son

    \ begin {alignat*} {2}\ delta_2& & &\ approx\ delta_0\ delta_1\\ delta_3&\ approx\ delta_1\ delta_2 & &\ approx\ delta_0\ delta_1^2\\ delta_4&\ approx\ delta_2\ delta_3 &\ approx\ delta_0^2\ delta_1^3\\\ delta_5&\ approx\ delta_3\ delta_4 & &\ approx\ delta_0^3\ delta_ 1^5\\ delta_6&\ approx\ delta_4\ delta_5 & &\ approx\ delta_0^5\ delta_1^8\\ delta_7&\ approx\ delta_5\ delta_6 & &\ approx\ delta_0^8\ delta_1^ {13}\ end {alignat*}

    Observe que cada\(\delta_n\) es de la forma\(\delta_0^{\alpha_n}\delta_1^{\beta_n}\text{.}\) Sustituir\(\delta_n=\delta_0^{\alpha_n}\delta_1^{\beta_n}\) en\(\delta_{n+1}\approx\delta_{n-1}\delta_n\) da

    \[ \delta_0^{\alpha_{n+1}}\delta_1^{\beta_{n+1}} \approx \delta_0^{\alpha_{n-1}}\delta_1^{\beta_{n-1}} \delta_0^{\alpha_n}\delta_1^{\beta_n} \nonumber \]

    y tenemos

    \[ \alpha_{n+1}=\alpha_{n-1}+\alpha_{n} \qquad \beta_{n+1}=\beta_{n-1}+\beta_{n} \tag{E8} \nonumber \]

    La regla de recursión en (E8) es famosa 1. La secuencia de Fibonacci 2 (que es\(0\text{,}\)\(1\text{,}\)\(1\text{,}\)\(2\text{,}\)\(3\text{,}\)\(5\text{,}\)\(8\text{,}\)\(13\text{,}\)\(\cdots\)), se define por

    \ begin {align*} F_0& =0\\ F_1& =1\\ F_n& =F_ {n-1} +F_ {n-2}\ qquad\ text {for} n>1\ end {align*}

    Entonces, para\(n\ge 2\text{,}\)\(\alpha_n = F_{n-1}\) y\(\beta_n=F_n\) y

    \[ \delta_n \approx \delta_0^{\alpha_n}\delta_1^{\beta_n} = \delta_0^{F_{n-1}}\delta_1^{F_n} \nonumber \]

    Una de las propiedades conocidas de la secuencia de Fibonacci es que, para\(n\text{,}\)

    \[ F_n\approx\frac{\varphi^n}{\sqrt{5}}\qquad\text{where } \varphi=\frac{1+\sqrt{5}}{2} \approx 1.61803 \nonumber \]

    Esta\(\varphi\) es la proporción áurea 3. Entonces, para grandes\(n\text{,}\)

    \ begin {alinear*} K\ varepsilon_n & =\ delta_n\ approx\ delta_0^ {F_ {n-1}}\ delta_1^ {f_n}\ approx\ delta_0^ {\ frac {\ varphi^ {n-1}} {\ sqrt {5}}\ delta_1^ {\ frac {\ varphi^ {\ varphi^ {\ varphi^ {\ sqrt {5}}\ delta_1^ {\ frac {\ ^n} {\ sqrt {5}}} =\ delta_0^ {\ frac {1} {\ sqrt {5}\ varphi}\ veces\ varphi^n}\ delta_1^ {\ frac {1} {\ sqrt {5}}\ veces\ varphi^n}\\ & = d^ {\ varphi^n}\ qquad\ text { donde}\ quad d=\ delta_0^ {\ frac {1} {\ sqrt {5}\,\ varphi}}\ delta_1^ {\ frac {1} {\ sqrt {5}}}\\ &\ aprox d^ {1.6^n}\ end {align*}

    Suponiendo que\(0\lt \delta_0=K\varepsilon_0\lt 1\) y\(0\lt \delta_1=K\varepsilon_1\lt 1\text{,}\) vamos a tener\(0\lt d\lt 1\text{.}\)

    A modo de contraste, para el método de Newton, para grandes\(n\text{,}\)

    \ begin {reunir*} K\ varepsilon_n\ aprox d^ {2^n}\ qquad\ text {donde}\ quad d= (K\ varepsilon_1) ^ {1/2}\ end {reunir*}

    Como\(2^n\) crece bastante más rápido que\(1.6^n\) (por ejemplo, cuando n=5,\(2^n=32\) y cuándo\(1.6^n=10.5\text{,}\)\(n=10\text{,}\)\(2^n=1024\) y\(1.6^n=110\)) el método de Newton se casa en la raíz bastante más rápido que el método secante, asumiendo que comienzas razonablemente cerca de la raíz.


    This page titled C.5 El comportamiento de error del método secante is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Joel Feldman, Andrew Rechnitzer and Elyse Yeager via source content that was edited to the style and standards of the LibreTexts platform.