5.2: Argumentos estándar
- Page ID
- 118382
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)5.2.1: Modus Ponens
argumento estándar con forma
\ (\ comenzar {alineado}
&p\ fila derecha q\\
&q\ fila derecha r\\
&\ hline p\ fila derecha r
\ final {alineado}\)
\(p \rightarrow q\) |
\(p\) |
\(q\) |
Verificar la validez del argumento estándar modus ponens.
Solución
Verificar la validez asegurando que cada fila en la tabla de verdad con premisas todas verdaderas también tenga la conclusión verdadera.
(pr) |
c) |
(pr) |
|
\(p\) |
\(q\) |
\(p \rightarrow q\) |
|
\(T\) |
\(T\) |
\(T\) |
\(\checkmark\)argumento es válido |
\(T\) |
\(F\) |
\(F\) |
|
\(F\) |
\(T\) |
\(\ast\) |
|
\(F\) |
\(F\) |
\(\ast\) |
El argumento en el Ejemplo 5.1.2 tiene forma de modus ponens. Por lo que es válido, aunque la primera premisa y la conclusión no sean realmente ciertas.
5.2.2 Modus tollens
argumento estándar con forma
\(\begin{aligned} &p \rightarrow q \\ &\neg q \\ & \hline \neg p \end{aligned}\)
Verificar la validez del argumento estándar modus tollens.
Solución
Verificar la validez asegurando que cada fila en la tabla de verdad con premisas todas verdaderas también tenga la conclusión verdadera.
(pr) |
(pr) |
c) |
|||
\(p\) |
\(q\) |
\(p \rightarrow q\) |
\(\neg q\) |
\(\neg p\) |
|
\(T\) |
\(T\) |
\(T\) |
\(F\) |
\(\ast\) |
|
\(T\) |
\(F\) |
\(F\) |
\(\ast\) |
\(\ast\) |
|
\(F\) |
\(T\) |
\(T\) |
\(F\) |
\(\ast\) |
|
\(F\) |
\(F\) |
\(T\) |
\(T\) |
\(T\) |
\(\checkmark\)argumento es válido |
El argumento en el Ejemplo 5.1.1 tiene la forma modus tollens.
5.2.3 Ley del silogismo
argumento estándar con forma
\(\begin{aligned} &p \rightarrow q\\ &q \rightarrow r \\ &\hline p \rightarrow r \end{aligned}\)
Ya verificamos que la Ley del Silogismo es válida en el Ejemplo Trabajado 5.1.4.
La Ley del Silogismo puede extenderse a cadenas de condicionales de longitud arbitraria (finita).
argumento estándar con forma
\(\begin{aligned} &p_1 \rightarrow p_2\\ &p_2 \rightarrow p_3 \\&\vdots \phantom{\rightarrow p_n} \\ &p_{n-1} \rightarrow p_n \\ & \hline p_1 \rightarrow p_n \end{aligned}\)
Verificaremos que la Ley extendida del silogismo es un argumento válido utilizando la inducción matemática en la Sección 7.2.
\(\begin{aligned} &\text{If I don't study hard this term, I won't master the course material.} \\ &\text{If I don't master the course material, I will fail the course.} \\ &\text{If I fail the course, I will have to take it again next year.} \\ &\text{If I take it again next year, I will have to study harder.} \\ &\hline \text{Therefore, if I don't study hard this term, I will have to study harder next year.} \end{aligned}\)