Saltar al contenido principal
LibreTexts Español

10.7E: Variación de parámetros para sistemas lineales no homogéneos (ejercicios)

  • Page ID
    114660
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Template:MathJaxTrench

    Q10.7.1

    En Ejercicios 10.7.1-10.7.10 encuentra una solución particular.

    1. \({\bf y}'=\left[\begin{array}{cc}{-1}&{-4}\\{-1}&{-1}\end{array} \right]{\bf y}+\left[\begin{array}{c}{21e^{4t}}\\{8e^{-3t}} \end{array}\right]\)

    2. \({\bf y}'=\frac{1}{5}\left[\begin{array}{cc}{-4}&{3}\\{-2}&{-11}\end{array} \right]{\bf y}+\left[\begin{array}{c}{50e^{3t}}\\{10e^{-3t}} \end{array}\right]\)

    3. \({\bf y}'=\left[\begin{array}{cc}{1}&{2}\\{2}&{1}\end{array} \right]{\bf y}+\left[\begin{array}{c}{1}\\{t} \end{array}\right]\)

    4. \({\bf y}'=\left[\begin{array}{cc}{-4}&{-3}\\{6}&{5}\end{array} \right]{\bf y}+\left[\begin{array}{c}{2}\\{-2e^{t}} \end{array}\right]\)

    5. \({\bf y}'=\left[\begin{array}{cc}{-6}&{-3}\\{1}&{-2}\end{array} \right]{\bf y}+\left[\begin{array}{c}{4e^{-3t}}\\{4e^{-5t}} \end{array}\right]\)

    6. \({\bf y}'=\left[\begin{array}{cc}{0}&{1}\\{-1}&{0}\end{array} \right]{\bf y}+\left[\begin{array}{c}{1}\\{t} \end{array}\right]\)

    7. \({\bf y}'=\left[\begin{array}{ccc}{3}&{1}&{-1}\\{3}&{5}&{1}\\{-6}&{2}&{4}\end{array} \right]{\bf y}+\left[\begin{array}{c}{3}\\{6}\\{3} \end{array}\right]\)

    8. \({\bf y}'=\left[\begin{array}{ccc}{3}&{-1}&{-1}\\{-2}&{3}&{2}\\{4}&{-1}&{-2}\end{array} \right]{\bf y}+\left[\begin{array}{c}{1}\\{e^{t}}\\{e^{t}} \end{array}\right]\)

    9. \({\bf y}'=\left[\begin{array}{ccc}{-3}&{2}&{2}\\{2}&{-3}&{2}\\{2}&{2}&{-3}\end{array} \right]{\bf y}+\left[\begin{array}{c}{e^{t}}\\{e^{-5t}}\\{e^{t}} \end{array}\right]\)

    10. \({\bf y}'=\frac{1}{3}\left[\begin{array}{ccc}{1}&{1}&{-3}\\{-4}&{-4}&{3}\\{-2}&{1}&{0}\end{array} \right]{\bf y}+\left[\begin{array}{c}{e^{t}}\\{e^{t}}\\{e^{t}} \end{array}\right]\)

    Q10.7.2

    En Ejercicios 10.7.11-10.7.20 encontramos una solución particular, dado que\(Y\) es una matriz fundamental para el sistema complementario.

    11. \({\bf y}'=\frac{1}{t}\left[\begin{array}{cc}{1}&{t}\\{-t}&{1}\end{array} \right]{\bf y}+t\left[\begin{array}{c}{\cos t}\\{\sin t}\end{array} \right];\quad Y=t\left[\begin{array}{cc}{\cos t}&{\sin t}\\{-\sin t}&{\cos t}\end{array} \right]\)

    12. \({\bf y}'=\frac{1}{t}\left[\begin{array}{cc}{1}&{t}\\{t}&{1}\end{array} \right]{\bf y}+\left[\begin{array}{c}{t}\\{t^{2}}\end{array} \right];\quad Y=t\left[\begin{array}{cc}{e^{t}}&{e^{-t}}\\{e^{t}}&{-e^{-t}}\end{array} \right]\)

    13. \({\bf y}'=\frac{1}{t^{2}-1}\left[\begin{array}{cc}{t}&{-1}\\{-1}&{t}\end{array} \right]{\bf y}+t\left[\begin{array}{c}{1}\\{-1}\end{array} \right];\quad Y=\left[\begin{array}{cc}{t}&{1}\\{1}&{t}\end{array} \right]\)

    14. \({\bf y}'=\frac{1}{3}\left[\begin{array}{cc}{1}&{-2e^{-t}}\\{2e^{t}}&{-1}\end{array} \right]{\bf y}+\left[\begin{array}{c}{e^{2t}}\\{e^{-2t}}\end{array} \right];\quad Y=\left[\begin{array}{cc}{2}&{e^{-t}}\\{e^{t}}&{2}\end{array} \right]\)

    15. \({\bf y}'=\frac{1}{2t^{4}}\left[\begin{array}{cc}{3t^{3}}&{t^{6}}\\{1}&{-3t^{3}}\end{array} \right]{\bf y}+\frac{1}{t}\left[\begin{array}{c}{t^{2}}\\{1}\end{array} \right];\quad Y=\frac{1}{t^{2}}\left[\begin{array}{cc}{t^{3}}&{t^{4}}\\{-1}&{t}\end{array} \right]\)

    16. \({\bf y}'=\left[\begin{array}{cc}{\frac{1}{t-1}}&{-\frac{e^{-t}}{t-1}}\\{\frac{e^{t}}{t+1}}&{\frac{1}{t+1}}\end{array} \right]{\bf y}+\left[\begin{array}{c}{t^{2}-1}\\{t^{2}-1}\end{array} \right];\quad Y=t\left[\begin{array}{cc}{t}&{e^{-t}}\\{e^{t}}&{t}\end{array} \right]\)

    17. \({\bf y}' = \frac{1}{t}\left[\begin{array}{ccc}{1}&{1}&{0}\\{0}&{2}&{1}\\{-2}&{2}&{2}\end{array} \right]{\bf y}+\left[\begin{array}{c}{1}\\{2}\\{1}\end{array} \right];\quad Y=\left[\begin{array}{ccc}{t^{2}}&{t^{3}}&{1}\\{t^{2}}&{2t^{3}}&{-1}\\{0}&{2t^{3}}&{2}\end{array} \right]\)

    18. \({\bf y}' = \left[\begin{array}{ccc}{3}&{e^{t}}&{e^{2t}}\\{e^{-t}}&{2}&{e^{t}}\\{e^{-2t}}&{e^{-t}}&{1}\end{array} \right]{\bf y}+\left[\begin{array}{c}{e^{3t}}\\{0}\\{0}\end{array} \right];\quad Y=\left[\begin{array}{ccc}{e^{5t}}&{e^{2t}}&{0}\\{e^{4t}}&{0}&{e^{t}}\\{e^{3t}}&{-1}&{-1}\end{array} \right]\)

    19. \({\bf y}' = \frac{1}{t}\left[\begin{array}{ccc}{1}&{t}&{0}\\{0}&{1}&{t}\\{0}&{-t}&{1}\end{array} \right]{\bf y}+\left[\begin{array}{c}{t}\\{t}\\{t}\end{array} \right];\quad Y=t\left[\begin{array}{ccc}{1}&{\cos t}&{\sin t}\\{0}&{-\sin t}&{\cos t}\\{0}&{-\cos t}&{-\sin t}\end{array} \right]\)

    20. \({\bf y}' = -\frac{1}{t}\left[\begin{array}{ccc}{e^{-t}}&{-t}&{1-e^{-t}}\\{e^{-t}}&{1}&{-t-e^{-t}}\\{e^{-t}}&{-t}&{1-e^{-t}}\end{array} \right]{\bf y}+\frac{1}{t}\left[\begin{array}{c}{e^{t}}\\{0}\\{e^{t}}\end{array} \right];\quad Y=\frac{1}{t}\left[\begin{array}{ccc}{e^{t}}&{e^{-t}}&{t}\\{e^{t}}&{-e^{-t}}&{e^{-t}}\\{e^{t}}&{e^{-t}}&{0}\end{array} \right]\)

    Q10.7.3

    21. Demostrar Teorema 10.7.1.

    22.

    1. Convertir la ecuación escalar\[P_0(t)y^{(n)}+P_1(t)y^{(n-1)}+\cdots+P_n(t)y=F(t) \tag{A}\] en un\(n\times n\) sistema equivalente\[{\bf y}'=A(t){\bf y}+{\bf f}(t). \tag{B}\]
    2. Supongamos que (A) es normal en un intervalo\((a,b)\) y\(\{y_1,y_2,\dots,y_n\}\) es un conjunto fundamental de soluciones de\[P_0(t)y^{(n)}+P_1(t)y^{(n-1)}+\cdots+P_n(t)y=0 \tag{C}\] on\((a,b)\). Encontrar una matriz fundamental correspondiente\(Y\) para\[{\bf y}'=A(t){\bf y} \tag{D}\] sobre\((a,b)\) tal que\[y=c_1y_1+c_2y_2+\cdots+c_ny_n\nonumber \] sea una solución de (C) si y sólo si\({\bf y}=Y{\bf c}\) con\[{\bf c}=\left[\begin{array}{c}c_1\\c_2\\\vdots\\c_n\end{array}\right]\nonumber \] es una solución de (D).
    3. Dejar\(y_p=u_1y_1+u_1y_2+\cdots+u_ny_n\) ser una solución particular de (A), obtenida por el método de variación de parámetros para ecuaciones escalares como se da en la Sección 9.4, y definir\[{\bf u}=\left[\begin{array}{c}u_1\\u_2\\\vdots\\u_n\end{array}\right].\nonumber \] Mostrar que\({\bf y}_p=Y{\bf u}\) es una solución de (B).
    4. Dejar\({\bf y}_p=Y{\bf u}\) ser una solución particular de (B), obtenida por el método de variación de parámetros para sistemas como se da en esta sección. Demostrar que\(y_p=u_1y_1+u_1y_2+\cdots+u_ny_n\) es una solución de (A).

    23. Supongamos que la función\(n\times n\) matrix\(A\) y la función\(n\) —vector\({\bf f}\) son continuas\((a,b)\). Dejar entrar\(t_0\)\((a,b)\), dejar\({\bf k}\) ser un vector constante arbitrario, y dejar\(Y\) ser una matriz fundamental para el sistema homogéneo\({\bf y}'=A(t){\bf y}\). Utilizar la variación de parámetros para demostrar que la solución del problema de valor inicial

    \[{\bf y}'=A(t){\bf y}+{\bf f}(t),\quad {\bf y}(t_0)={\bf k}\nonumber \]

    es

    \[{\bf y}(t)=Y(t)\left( Y^{-1}(t_0){\bf k}+\int_{t_0}^t Y^{-1}(s){\bf f}(s)\, ds\right).\nonumber \]


    This page titled 10.7E: Variación de parámetros para sistemas lineales no homogéneos (ejercicios) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.