6.2: Ecuación de calor no homogénea
- Page ID
- 118011
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Aquí consideramos el problema de valor inicial para\(u=u(x,t)\)\(u\in C^\infty(\mathbb{R}^n\times R_+)\),
\ begin {eqnarray*}
u_t-\ triángulo u&=&f (x, t)\\\ mbox {en}\ x\ in\ mathbb {R} ^n,\ t\ ge0,\\
u (x,0) &=&\ phi (x),
\ end {eqnarray*}
donde\(\phi\) y\(f\) se dan. Desde
$$\ sombrero ancho {u_t-\ triángulo u} =\ sombrero ancho {f (x, t)}\]
obtenemos un problema de valor inicial para una ecuación diferencial ordinaria:
\ begin {eqnarray*}
\ frac {d\ sombrero ancho {u}} {dt} +|\ xi|^2\ sombrero ancho {u} &=&\ sombrero ancho {f} (\ xi, t)\
\ sombrero ancho {u} (\ xi,0) &=&\ sombrero ancho {\ phi} (\ xi).
\ end {eqnarray*}
La solución viene dada por
$$\ sombrero ancho {u} (\ xi, t) =e^ {-|\ xi|^2 t}\ sombrero ancho {\ phi} (\ xi) +\ int_0^t\ e^ {-|\ xi|^2 (t-\ tau)}\ sombrero ancho {f} (\ xi,\ tau)\ d\ tau.\]
Aplicando la transformada inversa de Fourier y un cálculo como en la prueba del Teorema 5.1, paso (vi), obtenemos}
\ begin {eqnarray*}
u (x, t) &=& (2\ pi) ^ {-n/2}\ int_ {\ mathbb {R} ^n}\ e^ {ix\ cdot\ xi}\ Grande (e^ {-|\ xi|^2t}\ sombrero ancho {\ phi} (\ xi)\\
&&\ +\ int_0^t\ ^ {-|\ xi|^2 (t-\ tau)}\ sombrero ancho {f} (\ xi,\ tau)\ d\ tau\ Grande)\ d\ xi.
\ end {eqnarray*}
A partir del cálculo anterior para el problema homogéneo y cálculo como en la prueba del Teorema 5.1, paso (vi), obtenemos la fórmula
\ begin {eqnarray*}
u (x, t) &=&\ frac {1} {(2\ sqrt {\ pi t}) ^n}\ int_ {\ mathbb {R} ^n}\\ phi (y) e^ {-|y-x|^2/ (4t)}\ dy\
& &+\ int_0^t\ int_ {\ mathbb {R} ^n}\ f (y,\ tau)\ frac {1} {\ izquierda (2\ sqrt {\ pi (t-\ tau)}\ derecha) ^n}\ e^ {-|y-x|^2/ (4 (t-\ tau))}\ dy\ d\ tau.
\ end {eqnarray*}
Esta función\(u(x,t)\) es una solución del problema de valor inicial no homogéneo anterior proporcionado
$$\ phi\ en C (\ mathbb {R} ^n),\\\ sup_ {\ mathbb {R} ^n} |\ phi (x) |<\ infty\]
y si
$$f\ en C (\ mathbb {R} ^n\ veces [0,\ infty)),\\ M (\ tau) :=\ sup_ {\ mathbb {R} ^n} |f (y,\ tau) |<\ infty,\ 0\ le\ tau<\ infty.\]