6.1: Evaluar expresiones
- Page ID
- 112576
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)El valor absoluto de un número real\(a\), escrito\(|a|\), es la distancia de\(a\) a\(0\) en una recta numérica.
Para encontrar\(|−4|\), pregunta: “¿cuál es la distancia de\(−4\) a\(0\)?”. Dibuja una recta numérica y ve eso\(|−4| = 4\). De igual manera\(|4| = 4\), como se muestra en la siguiente figura.
Evalúe las siguientes expresiones:
- \(|8−2|− |4−7|\)
- \(5|−3|+|−9|^2\)
- \(\dfrac{3}{5}|6 + (−3)^3|\)
- \(\left|\dfrac{(−2)^2 + 12}{3} +5 \right|+|−4+2|\)
Solución
- Para evaluar\(|8 − 2| − |4 − 7|\), primero simplificar dentro del valor absoluto.
\(\begin{array} &&|8 − 2| − |4 − 7| &\text{Given} \\ &= |6| − |− 3| &\text{Simplify inside the absolute value} \\ &= (6) − (3) &\text{Absolute value definition} \\ &= 3 & \end{array}\)
- Primero, simplifique los valores absolutos, luego aplique la operación aritmética requerida.
\(\begin{array} &&5| − 3| + | − 9|^2 &\text{Given} \\ &= 5(3) + (9)^2 &\text{Absolute value definition} \\ &= 15 + 81 &\text{Simplify} \\ &= 96 & \end{array}\)
- Utilizar orden de operaciones” PEMDAS” para simplificar dentro del valor absoluto.
\(\begin{array} &&\dfrac{3}{5}|6 + (−3)^3| &\text{Given} \\ &=\dfrac{3}{5}|6 + (−27)| &\text{Evaluate the exponent term} \\ &= \dfrac{3}{5} − 21 &\text{Simplify inside the absolute value} \\ &= \dfrac{3}{5} (21) &\text{Absolute value definition} \\ &= \dfrac{63}{5} & \end{array}\)
- Para evaluar la expresión en esta parte, primero aplicar el orden de operación” PEMDAS” dentro del valor absoluto para simplificar.
\(\begin{array} &&\left|\dfrac{(−2)^2 + 12}{3} +5 \right|+|−4+2| &\text{Given} \\ &= \left|\dfrac{(4 + 12)}{3} +5 \right|+|−2| &\text{Simplify} \\ &= \left|\dfrac{16}{3} +5 \right|+|−2| &\text{Note that \(3\)es la pantalla LCD de\(\dfrac{16}{3}\) y\(5\). \(5\)se puede escribir como\(\dfrac{5}{1}\)}\\ &=\ izquierda|\ dfrac {16} {3} +\ dfrac {5 (3)} {1 (3)}\ right|+|−2| &\ text {Multiplicar numerador y denominador de\(\dfrac{5}{1}\) por LCD para agregar los términos dentro del valor absoluto.}\\ &=\ izquierda|\ dfrac {31} {3}\ derecha|+−= 2| &\\ &=\ izquierda (\ dfrac {31} {3}\ derecha) + (2) & amp;\ text {Definición de valor absoluto}\\ &=\ dfrac {31} {3} + 2 &\ text {Similar a lo anterior,\(3\) es la pantalla LCD de\(\dfrac{31}{3}\) y\(2\). \(2\)se puede escribir como\(\dfrac{2}{1}\).}\\ &=\ dfrac {31} {3} +\ dfrac {2 (3)} {1 (3)} &\ text {\(\dfrac{3}{3}\)Multiplicar\(\dfrac{2}{1}\) por para agregar los dos términos.}\\ &=\ dfrac {37} {3} &\ end {array}\)
Evaluar las expresiones dadas:
- \(|8 − 15|\)
- \(|− 3 −12|\)
- \(\left|− 2 + 11 − \left( −\dfrac{6}{4} \right) \right|\)
- \(\left|−\dfrac{1 + 5}{12} − 5\right|− 1\)
- \(|2 (5 + 6) − 20|\)
- \(\left|\dfrac{1}{2} (21 − 5) − |(−2)^3 \right|\)
- \(\left|−5 |− 2(−13 + 10) \right|\)
- \(\dfrac{3}{2} \left| 12 \left( \dfrac{−7 + 17}{(6 − 2)} \right) \right| + |− (−2)|\)