Buscar
- Filtrar resultados
- Ubicación
- Clasificación
- Incluir datos adjuntos
- https://espanol.libretexts.org/Matematicas/Algebra_lineal/Un_Primer_Curso_de_%C3%81lgebra_Lineal_(Kuttler)/09%3A_Espacios_vectoriales/9.07%3A_Isomorfismos\[\begin{aligned} T \left( k \left[\begin{array}{cc} a_1 & b_1 \\ c_1 & d_1 \end{array}\right] + p \left[\begin{array}{cc} a_2 & b_2 \\ c_2 & d_2 \end{array}\right] \right) &= T \left( \left[\begin{ar...\[\begin{aligned} T \left( k \left[\begin{array}{cc} a_1 & b_1 \\ c_1 & d_1 \end{array}\right] + p \left[\begin{array}{cc} a_2 & b_2 \\ c_2 & d_2 \end{array}\right] \right) &= T \left( \left[\begin{array}{cc} k a_1 & k b_1 \\ k c_1 & k d_1 \end{array}\right] + \left[\begin{array}{cc} p a_2 & p b_2 \\ p c_2 & p d_2 \end{array}\right] \right) \\ &= T \left( \left[\begin{array}{cc} k a_1 + p a_2 & k b_1 + p b_2 \\ k c_1 + p c_2& k d_1 + p d_2 \end{array}\right] \right) \\ &= \left[ \begin{array}{c…
- https://espanol.libretexts.org/Humanidades/Filosofia/Conjuntos_Logica_Computacion_(Zach)/01%3A_Conjuntos_Relaciones_Funciones/03%3A_Funciones/3.06%3A_IsomorfismoUn isomorfismo es una biyección que preserva la estructura de los conjuntos que relaciona, donde la estructura es cuestión de las relaciones que obtienen entre los elementos de los conjuntos.
- https://espanol.libretexts.org/Matematicas/Algebra_Abstracta_y_Geometrica/Introducci%C3%B3n_a_Grupos_y_Geometr%C3%ADas_(Lyons)/02%3A_Grupos/2.04%3A_Homomorfismos_grupalesDejarK ser un subgrupo de un grupoG. El conjuntoG/K de coconjuntos deK forma un grupo, llamado grupo cociente (o grupo factorial), bajo la operación Un subgrupoH de un grupo...DejarK ser un subgrupo de un grupoG. El conjuntoG/K de coconjuntos deK forma un grupo, llamado grupo cociente (o grupo factorial), bajo la operación Un subgrupoH de un grupoG se llama normal sighg−1∈H por cadag∈G,h∈H. EscribimosH⊴G para indicar queH es un subgrupo normal deG.
- https://espanol.libretexts.org/Matematicas/Algebra_lineal/Un_Primer_Curso_de_%C3%81lgebra_Lineal_(Kuttler)/05%3A_Transformaciones_lineales/5.06%3A_IsomorfismosUn mapeoT:V→W se denomina transformación lineal o mapa lineal si conserva las operaciones algebraicas de suma y multiplicación escalar.
- https://espanol.libretexts.org/Matematicas/Algebra_Abstracta_y_Geometrica/Una_aproximaci%C3%B3n_basada_en_la_investigaci%C3%B3n_al_%C3%A1lgebra_abstracta_(Ernst)/08%3A_Una_introducci%C3%B3n_a_los_anillos/8.02%3A_Homomorfismos_de_AnilloResulta queϕ es un homomorfismo de anillo, dondeker(ϕ) está el conjunto de polinomios con 0 término constante. Supongamos queϕ:R→S es un homomorfismo de anillo tal queR es...Resulta queϕ es un homomorfismo de anillo, dondeker(ϕ) está el conjunto de polinomios con 0 término constante. Supongamos queϕ:R→S es un homomorfismo de anillo tal queR es un anillo con 1, llámela1R. Demostrar queϕ(1R) es la identidad multiplicativa enϕ(R) (que es un subring deS). ¿Se te ocurre un ejemplo de un homomorfismo de anillo dondeS tiene una identidad multiplicativa que no es igual aϕ(1R)?
- https://espanol.libretexts.org/Estadisticas/Teoria_de_Probabilidad/Probabilidad%2C_estad%C3%ADstica_matem%C3%A1tica_y_procesos_estoc%C3%A1sticos_(Siegrist)/01%3A_Fundaciones/1.04%3A_%C3%93rdenes_ParcialesLos órdenes parciales son una clase especial de relaciones que juegan un papel importante en la teoría de la probabilidad.
- https://espanol.libretexts.org/Matematicas/Algebra_Abstracta_y_Geometrica/%C3%81lgebra_abstracta_del_primer_semestre%3A_un_enfoque_estructural_(Sklar)/03%3A_Homomorfismos_e_isomorfismos/3.02%3A_Definiciones_de_Homomorfismos_e_IsomorfismosIntuitivamente, se puede pensar en un homomorfismo como un mapa de “preservación de la estructura”: si multiplicas y luego aplicas el homormorfismo, obtienes el mismo resultado que cuando aplicas el h...Intuitivamente, se puede pensar en un homomorfismo como un mapa de “preservación de la estructura”: si multiplicas y luego aplicas el homormorfismo, obtienes el mismo resultado que cuando aplicas el homomorfismo por primera vez y luego multiplicas. Los isomorfismos, entonces, conservan la estructura y preservan la cardinalidad. Los homomorfismos de un grupo G a sí mismo se llaman endomorfismos, y los isomorfismos de un grupo a sí mismo se llaman automorfismos.
- https://espanol.libretexts.org/Matematicas/Algebra_Abstracta_y_Geometrica/Una_aproximaci%C3%B3n_basada_en_la_investigaci%C3%B3n_al_%C3%A1lgebra_abstracta_(Ernst)/03%3A_Subgrupos_e_isomorfismos/3.03%3A_IsomorfismosAdemás, dado que dos grupos finitos tienen una coloración de tabla idéntica si y sólo si existe una coincidencia entre los dos grupos, debe darse el caso de que dos grupos sean isomórficos si y sólo s...Además, dado que dos grupos finitos tienen una coloración de tabla idéntica si y sólo si existe una coincidencia entre los dos grupos, debe darse el caso de que dos grupos sean isomórficos si y sólo si hay una coincidencia entre los dos grupos.