Saltar al contenido principal
LibreTexts Español

6: Radiación Atmosférica

  • Page ID
    88808
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Objetivos de aprendizaje

    Al final de este capítulo, deberías ser capaz de:

    • identificar las causas del cambio de radiación solar en la Tierra
    • calcular las propiedades del espectro de radiación solar y terrestre en términos de la función Planck
    • calcular la absorción entre usted y una fuente de luz
    • explicar por qué el cielo se ve azul y nebuloso en el verano

    La radiación atmosférica juega un papel crítico en la vida en la Tierra y en el clima. Sin calentamiento solar, la Tierra sería una bola congelada muerta que se precipitaba por el espacio. Por suerte, la energía que recibe la Tierra de la radiación solar es suficiente para producir agua líquida en su superficie, permitiendo así que la vida prospere. En este capítulo, veremos la radiación solar y sus cambios a lo largo del tiempo. La radiación es solo otra forma de energía y puede convertirse fácilmente en otras formas, especialmente la energía térmica, que a veces se llama “calor”. En este capítulo, usaremos la palabra “radiación” para significar todas las ondas electromagnéticas, incluidas las ultravioletas, las visibles y las infrarrojas. Introduciremos algunos términos desconocidos como “resplandor” e “irradiancia” y tendremos cuidado con nuestro lenguaje para evitar confusiones.

    • 6.1: Preludio a la Radiación Atmosférica
    • 6.2: Radiación Atmosférica - ¿Por qué importa?
      Todo irradia: el Sol, la Tierra, la atmósfera y ustedes. La energía proporcionada por el Sol se reutiliza en el sistema de la Tierra para proporcionar la energía que impulsa el clima y el clima. Pero en última instancia, la radiación infrarroja irradiada por la Tierra al espacio debe equilibrar la radiación solar visible que entra en el sistema terrestre. Desde el punto de vista del sistema terrestre, estamos muy preocupados por cómo la radiación atmosférica interactúa con la materia.
    • 6.3: Empezar en la Fuente - Tierra Girando Alrededor del Sol
      La radiación solar impulsa el sistema terrestre y hace posible la vida. La radiación solar se absorbe y luego se usa para aumentar la temperatura de la superficie, cambiar la fase del agua y alimentar la química atmosférica. La distribución desigual de la radiación solar en la superficie de la Tierra impulsa la dinámica atmosférica.
    • 6.4: ¿Cómo se relaciona la energía con la longitud de onda de la radiación?
    • 6.5: El Espectro Solar
      El Sol emite radiación de los rayos X a las ondas de radio, pero la irradiancia de la radiación solar alcanza su punto máximo en las longitudes de onda visibles (ver figura a continuación). Las unidades comunes de irradiancia son Julios por segundo por m² de superficie que se ilumina por nm de longitud de onda (por ejemplo, entre 300 nm y 301 nm), o W m-2 nm-1. Estas unidades son las unidades de irradiancia espectral, que también se llama simplemente irradiancia, pero en función de la longitud de onda.
    • 6.6: ¿Cuál es el origen de la Función Planck?
      Todos los objetos (gas, líquido o sólido) emiten radiación. Sin embargo, los fotones no pueden tener valores continuos de energía fotónica; en cambio, la energía fotónica se cuantifica, lo que significa que solo puede tener valores discretos de energía (aunque muy pequeña cantidad de energía). Cuando se asume esta distribución cuantificada, entonces la distribución de la irradiancia espectral que deja un área unitaria de la superficie del objeto por unidad de tiempo por unidad de intervalo de longitud de onda en un hemisferio se denomina Función de Distribución de Planck.
    • 6.7: ¿Qué longitud de onda tiene la mayor irradiancia espectral?
    • 6.8: ¿Cuál es la irradiancia total de cualquier objeto?
    • 6.9: La Ley de Kirchhoff explica por qué nadie es perfecto
      Recuerde que cuando la radiación encuentra materia puede ser absorbida o transmitida o dispersada (incluida la reflejada). Para un objeto que actúa como una función perfecta de distribución de Planck, debe absorber toda la radiación completamente sin dispersión y sin transmisión. Algunos objetos absorben muy bien en algunas longitudes de onda pero no en otras. Por ejemplo, el vapor de agua absorbe poca radiación visible pero absorbe muy bien la radiación infrarroja en algunas longitudes de onda.
    • 6.10: ¿Por qué los objetos absorben de la manera en que lo hacen?

    Miniaturas: Tenga en cuenta las dos erupciones más pequeñas antes de la grande. Aquí se muestra la atmósfera superior del Sol (corona). (CC BY-SA 3.0 Unported; Patrick McCauley/de Quarks a Quasars/SDO vía Wikipedia).


    This page titled 6: Radiación Atmosférica is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by William Brune (John A. Dutton: e-Education Institute) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.