5: Sintaxis y Semántica
- Page ID
- 103672
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)- 5.1: Introducción
- Para desarrollar la teoría y metateoría de la lógica de primer orden, primero debemos definir la sintaxis y semántica de sus expresiones.
- 5.2: Idiomas de primer orden
- Las expresiones de lógica de primer orden se construyen a partir de un vocabulario básico que contiene variables, símbolos constantes, símbolos predicados y, a veces, símbolos de función. A partir de ellos, junto con las conectivas lógicas, cuantificadores y símbolos de puntuación como paréntesis y comas, se forman términos y fórmulas.
- 5.3: Términos y Fórmulas
- Una vez que\(\mathcal L\) se da un lenguaje de primer orden, podemos definir expresiones construidas a partir del vocabulario básico de\(\mathcal L\). Estos incluyen en términos y fórmulas particulares.
- 5.4: Legibilidad única
- La forma en que definimos las fórmulas garantiza que cada fórmula tenga una lectura única, es decir, esencialmente solo hay una forma de construirla de acuerdo a nuestras reglas de formación para fórmulas y sólo una forma de “interpretarla”.
- 5.5: Operador principal de una Fórmula
- A menudo es útil hablar sobre el último operador utilizado en la construcción de una fórmula\(A\). Este operador se llama el operador principal de\(A\).
- 5.6: Subfórmulas
- A menudo es útil hablar de las fórmulas que “conforman” una fórmula dada. A estos los llamamos sus subfórmulas.
- 5.7: Variables libres y oraciones
- Si una variable ocurre en el alcance de un cuantificador se considera enlazada, de lo contrario libre. Las fórmulas sin ocurrencias de variables libres se llaman oraciones.
- 5.8: Sustitución
- Si\(A\) es una fórmula,\(x\) es una variable, y\(t\) es un término libre para\(x\) in\(A\), entonces\({A}[t/x]\) es el resultado de sustituir\(t\) todas las ocurrencias libres de\(x\) in\(A\).
- 5.9: Estructuras para Lenguas de Primer Orden
- Los lenguajes de primer orden son, por sí mismos, no interpretados: los símbolos constantes, los símbolos de función y los símbolos predicados no tienen un significado específico asociado a ellos. Los significados se dan especificando la estructura.
- 5.10: Estructuras cubiertas para idiomas de primer orden
- Se cubre una estructura si cada elemento del dominio es el valor de algún término cerrado.
- 5.11: Satisfacción de una Fórmula en una Estructura
- Una fórmula se satisface en una estructura si la interpretación dada a los predicados hace que la fórmula sea verdadera en el dominio de la estructura.
- 5.12: Asignaciones Variables
- El valor de un término\(t\), y si una fórmula\(A\) se satisface o no en una estructura con respecto a\(s\), sólo depende de las asignaciones\(s\) que haga a las variables en\(t\) y las variables libres de\(A\).
- 5.13: Extensionalidad
- La extensionalidad, a veces llamada relevancia, puede expresarse de manera informal de la siguiente manera: los únicos factores que inciden\(A\) en la satisfacción de la fórmula en una estructura\(M\) relativa a una asignación variable\(s\), son el tamaño del dominio y las asignaciones realizadas por\(M\) y\(s\) a los elementos del lenguaje que realmente aparecen en\(A\).
- 5.14: Nociones semánticas
- La relación de satisfacción es la base de todas las nociones semánticas.